
SoS

dynamic software & engineering

optiSLang

ISSUE 2/2019

RDO-JOURNAL 

Title Story // AI and Machine Learning Applied in CAE
Electric Machine Design with MOP-Based Pareto Optimization

Modeling Test Rigs for Airplane High-Lift Systems 

Optimization of an Actuator Magnetic Force

Multidisciplinary Optimization of a Civil Turbofan Jet Engine

Safety Assessment of Automated Driver Assistance Systems

Functional Development of Hydraulic Valves



Editorial

Applied Computational 
Mechanics

Responsible Universities
•  HAW Landshut and Technische 

Hochschule Ingolstadt, Germany
•  PES University, India

Advancement Opportunities
• Master of Engineering (M.Eng.)
•  Qualification in selected modules

Module Offer (excerpt)
•  Nonlinear and Contact Analysis
• Materials and Material Models
• Computational Dynamics
• Fatigue and Fracture Mechanics
• Modeling Techniques
• Optimization and Robust Design

Computational  
Fluid Dynamics

Responsible University
•  HSR Hochschule für Technik 

Rapperswil, Switzerland

Advancement Opportunities
• Certificate of Advanced Studies
•  Qualification in selected modules

Module Offer 
• CFD in Practice
• Fluid Dynamics and Heat Transfer
•  Mathematics and Computational 

Methods

Digital  
City

Responsible University
•  TUM School of Management,  

Germany

Advancement Opportunities
• TUM University Certificate 

Contents (excerpt) 
• Digital Twin
•  City and Building Planning
• BIM Collaboration
• 3D City Modelling
• Analysis and Simulation
• Urban Mobility
 

Upgrade your work, upgrade your life.

The career-integrated study programs enable engineers with bachelor’s and master’s  
degrees to obtain scientifically based and practice-oriented simulation knowledge.

Start your next career level now
www.esocaet.com/en/studies • +49 (0) 8092 7005-52

INFORM  

NOW AND 

APPLY 

FOR THE NEXT 

 CLASSES

Every industry has high expectations in AI as a promising 
technology to promote current and create new business 
opportunities. Over the last decade, AI-based research has 
developed different powerful mathematical tools to mimic 
natural intelligence with the help of computers. 

The AI-based metamodeling functionality is especially im-
portant for digital twins or autonomous drive applications. 
Here, the understanding of the response variability of a 
large data set and its correlation to input variability has to 
be considered. 

For example, since more and more vehicles have been 
equipped with Advanced Driver Assistance Systems (ADAS), 
researchers and industries pay constantly growing at-
tention to such technologies. One of the most important 
aspects for releasing ADAS is testing and validation. The 
mileage needed to proof the probability of system failure 
is impossible to reach in fi eld operational tests. Therefore, 
statistical methods combined with Software-in-the-Loop 
(SiL) simulation have to be used. Beside meta-modeling, 
the fi eld of reliability analysis provides algorithms and ap-
proaches which can be applied to assess ADAS by simula-
tion. Due to the different kind of parameters and criteria, 
available methodologies need to be analyzed and adapted 
to ADAS specifi c challenges. By using predefi ned distribu-
tion functions for each input parameter, metamodeling 
combined with reliability analysis obtains safety state-
ments with the approximation of the probability of failure 
for each traffi c scenario. Here, multiple steps of different 
algorithms are combined to ensure trustworthy results and 
effi cient procedures to be able to manage the necessary 
number of simulation runs.

The title story of this magazine wants to clarify what is “new” 
in the context of AI for CAE, especially regarding Machine 
Learning (ML) algorithms. The availability of large data sets 
combined with rising computation power creates a high po-
tential for using ML in meta-modeling. Classical regression 
methods and AI-based algorithms for metamodeling are 
compared and discussed regarding the problem of overfi t-
ting, reachable forecast quality and related numerical effort 
to generate the meta-models. Furthermore, the initializa-
tion of machine learning algorithms and the integration of 
this technology into Dynardo’s software tools is discussed 
and a fi rst implementation of deep learning neural networks 
using Google’s TensorFlow Library is introduced.

Apart from that, we again have selected case studies and 
customer stories concerning CAE-based Robust Design Op-
timization (RDO) applied in different industries. 

I hope you will enjoy reading our magazine.
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Johannes Will
Managing Director DYNARDO GmbH

Weimar, May 2019
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Self-learning algorithms prove high potential in metamodeling for CAE-based applications. Especially if large 
amounts of data from simulation or experiments are available, they outperform “classic” regression methods.

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 
APPLIED IN COMPUTER AIDED ENGINEERING

TITLE STORY // MACHINE LEARNING

Introduction
Artifi cial Intelligence (AI) is the new shooting star in science and 
every industry has high hopes in using the “new” technology for 
almost everything. In this article, we would like to discuss what 
is “new” in AI for Computer Added Engineering (CAE) and what 
we can expect using AI-based technology for CAE applications. 
Starting with Wikipedia (en.wikipedia.org/wiki/Artifi cial_intel-
ligence): “In computer science, artifi cial intelligence (AI), some-
times called machine intelligence, is intelligence demonstrated 
by machines, in contrast to the natural intelligence displayed 
by humans and animals. Colloquially, the term “artifi cial intel-
ligence” is used to describe machines that mimic “cognitive” 
functions that humans associate with other human minds, 
such as “learning” and “problem solving”. Continuing in related 
articles, we can extract that, like AI, different mathematical 
tools, which mimic natural intelligence by machine intelligence 
using computers, are understood. By searching for CAE applica-
tions, we will fi nd several methods which are well known for a 
long time. This is mainly the methodology for solving optimi-
zation problems inspired by nature, such as evolutionary algo-
rithms including genetic programming, swarm intelligence, as 
well as simulated annealing or, inspired by the human brain, 
so-called Artifi cial Neural Networks (ANN) are used. 

Especially so-called Machine Learning (ML) algorithms ex-
tending ANN to deep forward neural or deep recurrent net-
work as well as using support vector machines, which have 
made signifi cant progress in the last decades, is indeed 
“new” in the context of AI for CAE. Taking advantage of that 
new technology and the availability of large data set and ris-
ing compute power, we expect that ML has a large poten-
tial for surrogate modeling. In purely mathematically driven 
surrogate models, often called meta-models, the learning 
process tries to understand how the response variability of 

a data set is correlated to variability of the inputs directly on 
the available data sets without further assumptions on the 
underlying physics. The required data may be collected from 
real measurements as applied for digital twins or in autono-
mous drive applications or may be obtained from simula-
tions typically used in CAE based design. 
 Of course, using correlation and regression analysis for 
meta-modeling, the process of clean, train, test data and 
try to learn what is the best combination of dimensional-
ity and basis function is also not really new. Therefore, this 
article will start with introducing classical regression meth-
ods for meta-modeling, discussing the problem of over-
fi tting, which does not disappear with machine learning, 
defi ne machine learning algorithms and fi nally present the 
integration of machine learning technology into Dynardo’s 
software tools.

Classical regression methods
In classical regression methods, a defi ned set of basis func-
tions is used to set up a mathematical response surface 
model. Linear regression (Montgomery 2003) with linear 
or higher basis functions are a common basic approach, 
where a global set of basis functions is defi ned for a specifi c 
problem and for each basis function term the correspond-
ing coeffi cient has to be calculated. Often this is done by 
a minimized least squares approach, in which the squared 
errors between data and model approximation are mini-

mized. If the chosen global basis terms are not suitable to 
represent a physical phenomenon, this obtained response 
surface function is even in cases with suffi cient high num-
ber of data points often not acceptable accurate. 
In contrast to the global approach, local response surface 
methods like Moving Least Squares, Radial Basis Functions, 
or Kriging use basis terms with local support functions. 
With the help of a scaling factor the area of this local sup-
port can be defi ned. All available data points are usually 
considered as support of these local basis functions. This 
means, with increasing the data amount, the approxima-
tion quality of these local models raises. But in case of noisy 
data points, caused by solver noise in CAE or measurement 
errors in experimental analyses, such local models may 
tend to overfi tting, by representing artifi cial oscillations in 
the approximation function. The overfi tting needs special 
attention in the training and in the quantifi cation of the ac-
curacy of the surrogate model. 
 In the classical response surface approach, usually a 
specifi c model type and basis terms are chosen and trained 
with the data and later the approximation quality is quanti-
fi ed by some error measure. Often the Coeffi cient of Deter-
mination (CoD) as a measure of the goodness of fi t is used 
for this purpose. Unfortunately, measuring the accuracy of 
fi t is only suitable in cases, when the underlying regression 
model is not arbitrary fl exible to enable local overfi tting. 
In case of a global linear regression, the CoD is suitable, if 
the number of unknown regression terms is much smaller 

Fig. 2: Overview on different Machine Learning strategies (Source: www.morethandigital.info)

Fig. 1: Typical steps of machine learning algorithms (Source: www.machine-

learning-blog.com)
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as the number of available data points. If local regression 
models are used, as MLS or Kriging the CoD measure usu-
ally becomes too optimistic. In cases with signifi cant solver 
noise, the approximation function may be strongly distort-
ed by local oscillations which imply artifi cial non-physical 
correlations. Therefore, measuring the goodness of fi t is in-
capable to avoid the overfi tting and hence measuring the 
forecast quality by means of independent data point sets 
becomes crucial. 
 Today, many more meta-model approaches are available 
and it is often not clear which one is most suitable for a given 
problem (Roos 2007). Another challenge of meta-modeling 
is the so-called “curse of dimensionality”, meaning, that 
there is a dramatic decrease in the quality of approximation 
for all meta-model types as the number of input variables 
increases. As a result, large number of samples are required 
to represent high-dimensional problems with suffi cient ac-
curacy, having at the same time the tendency to overfi t the 
data as pointed out above. In order to overcome these prob-
lems, Dynardo developed the Metamodel of Optimal Prog-
nosis framework (Most and Will 2008, 2011), which will be 
discussed in a later section. Prior to that, we would like to 
introduce different strategies of machine learning.

Machine Learning
The machine learning approach can be seen as an exten-
sion of the classical response surface methods. Instead of 
choosing a predefi ned setup of basis function types and 
terms manually, this approach tries to learn the complexity 
of the required model type itself. The type of this automat-
ed learning now distinguishes between the different levels 
of machine learning.
 In the unsupervised learning so-called unlabeled data, 
which contain only the information about the input values, 
are considered. In clustering approaches for example, this may 
help to fi nd different regions in the variable space, where dif-
ferent data clouds are available, which might be treated dif-
ferently. On the other hand, dimension reduction techniques 
are very promising, in cases where a large number of input 
variables, which show signifi cant local or global dependencies 
to each other, needs to be considered. Exemplarily, the Princi-
pal Component Analysis method or related series expansion 
approaches are mentioned, which are very effi cient to reduce 
a large input dimension to a few representative variables. Re-
duction strategies used in Statistics on Structures (SoS) can be 
labeled as unsupervised machine learning. 
 In the supervised learning approach, the labels of the 
data, often understood as response variables, which de-
scribe a phenomenon depending on the input variables, are 
represented by a set of mathematical surrogate functions. 
During the learning or training process, the complexity of 
the function set is automatically adjusted to the require-
ments represented by the data. For example, the Support 
Vector Classifi cation and Regression, which uses local basis 
functions similar to Kriging, reduces the set of relevant ba-

sis terms automatically to these support points, which are 
required to build the class separation or the response func-
tion suffi ciently. This case is an example for automatic se-
lection of necessary data points. In the chapter “Metamodel 
of Optimal Prognosis” Dynardo’s MOP technology is intro-
duced and discussed as supervised machine learning ap-
proach with the focus on detecting the most important 
input variables as well as suitable regression functions. 
 Reinforcement learning approaches differ from super-
vised learning by the presence of labeled input/response 
pairs, and by sub-optimal pairs not being explicitly cor-
rected. Instead the focus is on fi nding a balance between 

Fig. 4: Simple feed-forward neural network consisting of one hidden layer and 

deep learning network with several hidden layers

exploration (of uncharted input territory) and exploitation 
(of current meta-models about input response correlation). 
Therefore, adaptive strategies are used to add additional 
support points in uncharted areas, respectively areas of in-
terest to improve the forecast quality of meta-models. Dy-
nardo’s Adaptive Metamodels of Optimal Prognosis (AMOP) 
can be classifi ed as a reinforced learning strategy. 

Metamodel of Optimal Prognosis
The Metamodel of Optimal Prognosis (MOP, Most & Will 2008, 
2011) can be seen as an advanced machine learning approach 
with automatic feature detection. Based on the Coeffi cient 
of Prognosis (CoP), which measures the forecast quality of an 
approximation model instead of the goodness of fi t, the MOP 
approach evaluates different regression methods with differ-
ent basis terms. Based on advanced fi lter strategies, different 
input variable combinations, which span different subspaces, 
are analyzed for different available regression model types. As 
a result, the optimal input variable set including the optimal 
approximation technique is obtained, which reaches the larg-
est CoP value for a given support point data set. 

One key point in this approach is the CoP, which allows to 
quantify the prediction quality of the approximation model 
independently of the model type. This measure is appli-
cable also for interpolation models with perfect goodness 
of fi t. The CoP estimates the fraction of explained variation 
in the prediction of the model. The residuals are calculated 
by using an independent test point set to estimate the ap-
proximation errors at test points. Based on the cross-vali-
dation principle, the prediction residuals are obtained for 
each data point set by a systematic exchange of regression 
and test points. With help of this procedure, an automatic 
selection of regression model types and variable subspaces 
is possible within the machine learning process. 
 Figure 3 shows a data set, which is splitted 50/50 to test 
and regression points in case 1 and vice versa in case 2. Unless 
advanced regression models are able to show a perfect fi tting 
quality (CoD), the forecast quality (CoP) quantifi es the true 
ability of the models to represent the data set response value 
variation. The difference between CoD and CoP quantifi es the 
overfi tting. It should be noted that in the test case 23% of arti-
fi cial noise is represented. By using more data points, the CoP 
measure of any representative spit will converge to 77%. 

Fig. 3: The Coeffi cient of Prognosis as measure of the prediction quality based 

on independent test data points

Fig. 5: Typical neural network types and architectures (Source: Fjodor van Veen, Asimov Institute, 2016)
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data sets with more than 1000 samples, a signifi cant speed 
up for the training is possible compared to classical meth-
ods as Kriging. Actually, the deep learning extension con-
tains feed-forward deep learning models with automatic 
confi guration of the network topology. Within the exten-
sion, the analyzed different model architectures are initial-
ized and trained using the Tensorfl ow library, which can be 
effi ciently parallelized on CPU and GPU environments.

Example
The rotational stiffness of a turbine impeller was analyzed. 
Therefore, 176 samples of a Latin Hypercube Sampling with 
13 geometry parameters as inputs have been considered. 
The response values, as rotational and axial stiffnesses as 
well as performance measures like isotropic effi ciency and 
mass fl ow and even life time estimates have been obtained 
for each parameter combination by a time-consuming 
multi-disciplinary analysis including computational me-
chanics, fl uid dynamics and fatigue analysis. That industri-
al example was used to test the performance and accuracy 
of the optiSLang deep learning extension. In Figure 7 the 
reference solution using the MOP dimension reduction and 
Kriging approximation is shown. The best possible global 
forecast quality is 99%. In Figure 8 the approximation func-
tions for the rotational stiffness are shown for a neural net-
work approximation considering all 13 parameters on the 
fi rst case and only the most important 6 geometry param-
eters in the second. In case one Figure 8 clearly indicates 
that the highly nonlinear behavior of the response cannot 
be represented suffi ciently. Due to the fl exibility of the 
model, the accuracy of fi t, measured by the CoD, is almost 
perfect, while the forecast quality, quantifi ed by the CoP, is 
signifi cantly less. Consequently, the deep learning training, 
which uses early stopping based on a validation data set 
to avoid overfi tting, results in a rather weak trained model 
in the full space. This phenomenon is critical especially for 
smaller data sets. In such cases the automatic variable fi l-
tering of the MOP approach is very promising, as shown in 
this example. The forecast quality could be increased from 
81% to 98% by training the neural network with the same 
topology but in the reduced optimal subspace.
 As already pointed out in chapter “Artifi cial Neural 
Networks and Deep Learning”, in case of small data sets 

Artifi cial Neural Networks and Deep Learning
Artifi cial neural networks are a special type of machine 
learning methods, which mimic the learning process of the 
human brain: based on simple neuron activation functions, 
sophisticated phenomena can be learned just by increasing 
the complexity of the network with more and more neu-
rons and connections. So-called deep learning neural net-
works consist usually of several layers of neurons with non-
linear activation functions, whereby each neuron of each 
layer is itself connected to all neurons of the previous and 
the following layer. With increasing number of neurons, the 
complexity of the overall surrogate function increases sig-
nifi cantly. Since the training algorithms are mainly based 
on simply update rules using stochastic optimizers, even 
such sophisticated deep learning networks can be effi cient-
ly trained. Especially, during the last ten years, the effi ciency 
of the training methods could be improved dramatically. 
This opened the door for more and more complex network 
types and architectures and therefor for more applications.
 In comparison to classical regressions methods, whose 
number of data points usually increases the training effort 
exponentially, the training of deep learning networks is still 
effi cient for large data sets. Due to the simplicity of the 
training, parallelization techniques can be applied easily.
 In cases of a suffi cient amount of data, a deep learn-
ing network structure is able to detect important features 
itself automatically during the training procedure. In oppo-
site cases, where the amount of data is limited, the reduc-
tion of input variables to only the important subset in the 
MOP workfl ow can signifi cantly improve the approximation 
quality of a neural network similarly to classical regression 
methods. Usually, in such cases, the different approxima-
tion models show a similar performance. In our experience, 
the deep learning networks are a very powerful exten-
sion to the classical regression methods, especially if large 
amount of data are available. 

optiSLang’s Deep Learning Extension
With the optiSLang deep learning extension, deep learn-
ing neural networks can be considered in the model test-
ing process of the Metamodel of Optimal Prognosis. Based 
on the CoP, the available models are tested and compared. 
Finally, the best model type is selected. Especially, for large 

Table 1: Comparison of numerical performance between Kriging and neural networks on a fi ve-dimensional analytical benchmark function using computation on CPU only

Fig. 6: Set up of optiSLang Deep Learning Extension models in the MOP set-

tings (top: selection of feed-forward model for the MOP competition, bottom: 

automatic and manual network setup)

Fig. 7: Rotational stiffness of a turbine impeller approximated by Kriging Fig. 8: Rotational stiffness of a turbine impeller approximated by a feed-forward 

network within the full parameter and the reduced optimal parameter space

Samples Kriging Deep Learning Extension

Training CoP Hidden neurons Training CoP

100 2 sec 99.99 % 3 x 10 3 min 99.73 %

500 3 min 99.99 % 3 x 20 7 min 99.96 %

2000 330 min 99.99 % 4 x 30 12 min 99.98 %

10000 not possible 4 x 50 72 min 99.99 %
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Experts at Motor Design Ltd demonstrate how the combination of Motor-CAD and optiSLang facilitates a data-driven 
exploration of the electric machine design space for an EV application utilizing multi-physics simulation.

MULTI-CRITERIA ELECTRIC MACHINE DESIGN WITH 
MOP-BASED PARETO OPTIMIZATION

CASE STUDY // ELECTRICAL ENGINEERING 

tiSLang brings within reach to greatly systematize and objec-
tivize the entire ab initio machine layout procedure.
 This case study outlines the current evolution state of a 
compressed layout procedure of a permanent magnet syn-
chronous machine intended for use in a plug-in hybrid car, 
and it shows how automated step-wise model building and 
MOP-based Pareto optimization are leveraged to ensure a 
real wide-angle exploration of the available design space, 
i.e. to avoid premature frame-narrowing.

The machine model
The chosen motor type and topology is a permanent mag-
net synchronous machine. The embedded magnets in the 
rotor are ordered in V-shaped pairs to form a pole. This is a 
well-known design since it was invented by Toyota for the 
fi rst generation Prius. Figure 1 (see next page) shows the 
cross section geometry of the 24-slot 16-pole motor. The 
numbers of slots and poles are indeed kept fi xed, but the 
number of turns of the winding and the axial length of the 
machine are defi ned as variables, and they are subject to 
the overall optimization procedure.

Introduction
The team of electric machine design experts at Motor Design 
Ltd. (MDL) in Wrexham, UK, develops the software Motor-CAD 
consisting of highly effi cient motor modeling and simulation 
tools able to represent besides the electromagnetic facet also 
the thermal and mechanical properties. The program compo-
nent Motor-CAD Lab can take in data from all the multi-physi-
cal sub-models and based on generating reduced-order models 
(ROMs) for crucial machine properties (like dissipation through 
hysteresis in ferromagnetic material and magnetic saturation) 
entire performance maps can be generated in minutes.
 The MDL team around founder Dave Staton and devel-
opment head James Goss represents decades of experience 
in academia and industry. It is interesting to refl ect how the 
introduction of optiSLang impacts on the approach to ab ini-
tio motor layout. Usually, several basic setup decisions were 
taken in steps based on simple preliminary calculations, e.g. 
axial length of the machine, numbers of poles, of slots, of 
winding turns. Only after fi xing that frame, algorithmic op-
timization was applied further downstream. It is clear that 
suboptimal decisions taken at the preliminary framing stage 
can set the entire motor layout procedure on a wrong track. 
With its automation and sensitivity analysis capabilities, op-
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terfacing of external machine learning algorithms to the 
MOP workfl ow is open to any third-party machine learning 
algorithm. 
 Right now, we are working on extensions to non-scalar 
meta-models, which will open the competition to Dynardo 
internal solutions for fi eld MOP using Statistics of struc-
tures (SoS) as well as to adaptive scalar and fi eld meta-
modeling techniques to improve meta-modeling quality by 
optimally placed additional simulated data points (Adap-
tive Metamodel of Optimal Prognosis, AMOP).

Authors //
Thomas Most, Johannes Will, Jonas Rotermund, Lars Gräning 
(Dynardo GmbH)
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(50...200) the AI-based deep learning networks show a simi-
lar performance to MLS or Kriging in the MOP workfl ow. In 
our experience, the deep learning networks become a very 
powerful extension to the classical regression methods, es-
pecially if large amount of data are available. Table 1 (see 
previous page) shows the comparison of numerical perfor-
mance using a fi ve-dimensional test example of a non-linear 
function. It can be clearly seen, that Kriging, which is able to 
reproduce the nonlinearity, will fail because of its numerical 
effort when the available numbers of sample rise.

Summary
This article discussed the relevance of “new” AI-technol-
ogies in the context of CAE applications. Fortunately, the 
CAE community in case of AI-based machine learning algo-
rithms can take benefi t of the enormous investments over 
the last decade in implementing public available libraries 
like TensorFlow from Google or Microsoft Cognitive Tool-
kit into CAE software applications. The article discusses in 
detail the MOP framework as supervised machine learning 
approach and the integration of feedforward neural net-
works into the MOP competition for the best possible me-
ta-model. Within the MOP workfl ow, overfi tting by using 
ANN is avoided due to rigorous testing of the forecast qual-
ity with help of the CoP. Users can investigate and quantify 
the global and local forecast quality of an ANN directly in 
comparison to classic meta-modeling techniques. The in-

Fig. 9: Representation of different types of machine learning in dynardo technology (Source: www.morethandigital.info)
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The introduction of three dimensionless split ratios for (1) 
slot width, (2) slot depth, and (3) stator-vs-rotor size en-
sures that (a) there is by principle no infeasible geometry 
and (b) extremely different setups can be reached by allow-
ing broad ranges for all parameters. All fl exible cross sec-
tion geometry parameters together with the variable active 
length form a nine-dimensional parameter space.
 Actually, no parameters describing electric circuitry or 
electric driving conditions are subject to variation. The reason 
is two-fold: on the one hand the main capability properties 
of the power electronics are considered as given boundary 
conditions, on the other hand the scripted recipe for single 
design evaluation together with Motor-CAD-internal rou-
tines allows the evaluation procedure to fl exibly adjust the 
winding setup so it optimally conforms to the limits imposed 
by the power electronics while ensuring a realistic slot fi ll fac-
tor, current density, and cooling properties.
 What does the scripted Motor-CAD machine model eval-
uation look like? Figure 2 shows a schematic of the sequence 
of analysis steps. Three aspects are particularly noteworthy: 
(a) the script avoids complete evaluations of motor designs 
which fail to meet a basic peak torque requirement; (b) scal-
ing for winding turns avoids burdening the analysis with 
discrete parameters and combinatorial rules or with nested 
optimization; and (c) in the main part of the script the design 
evaluation expands the scope beyond selected operating 
points towards a complete duty cycle. This is made possible 
by the Lab component of Motor-CAD.
 The Lab module utilizes the multi-physics solvers in 
Motor-CAD. It combines an effi cient electromagnetic ROM 
building method with fast-solving lumped-parameter ther-
mal models and control strategy algorithms. This enables 
a rapid characterization of the electric machine across the 
full operating range.
Figures 3 and 4 depict some of the main outcomes of the 
Lab-based machine analysis exemplarily for one of the opti-
mized designs discussed below. Figure 3 shows the torque-
speed envelopes for peak and continuous operation. During 
peak performance the heat generation in the machine is far 

sociated to the MOPs for all optimization-relevant response 
quantities. On this database, the settings (1) dimension 
reduction not allowed, (2) anisotropic Kriging included, 
and (3) CoP tolerances at zero were able to yield for sev-
eral quantities the best MOP judging not only by the total 
CoP number, but also comparing point distributions in the 
residual plots visualizing cross-validation errors. If e.g. a 
quantity like torque is intended for maximization, then the 
model fi t around the upper data ranges is of course more 
relevant than towards lowest values. This is how the residu-
al plot may justify a preference even when total CoP values 
of available MOPs are very similar.
 The high total CoP values of generally >97% show that 
for most responses only a tiny fraction of the variance re-
mains unexplained by their meta-model, which represents 
ideal preconditions for MOP-based optimization. Only for 
the quantity characterizing torque ripple the CoP value of 
93% is substantially lower. This is not surprising. Torque 
ripple is due to the tangential component of the magnetic 
fi eld across the airgap between rotor and stator. The torque 
effect is created by the integral all around the circumfer-
ence. Generally, when integral quantities are derived from 
manifold spatial patterns a high amount of information is 
lost and the response behavior is hard to relate to the input 
parameters causing specifi c pattern expressions.

Exploiting the MOP for fi nding the optimal mo-
tor design
Due to the high CoP values testifying that most of the sys-
tem behavior was captured, the set of MOPs offers itself for 
optimization and answering what-if questions in the form 
of experimenting with different combinations of objectives 
and constraints. Too sharp constraints make the problem 
solution impossible, but too weak constraints will allow 

power does not exceed the capacity of the cooling system.
 The performance map in Figure 4 shows motor effi -
ciency in the top half and generator effi ciency in the lower. 
It is based on the “max torque per ampere” strategy of op-
timal operation point choice. The overlaid set of blue dots 
symbolizes the WLTP-3 driving cycle. Judging the overall 
effi ciency subject to a realistic drive cycle is very valuable 
because it does not help to offer few perfectly effi cient op-
erating points if they are rarely ever reached and exploited 
by any vehicle on real-world roads. The overall drive cycle 
effi ciency is calculated by integrating over all phases of mo-
tor as well as generator usage.
 As a last step of evaluating one machine design, the 
newest Motor-CAD component is used for conducting a fi -
nite element analysis (FEA) of structural mechanics for cal-
culating material stress in the rotor and deducing a safety 
factor of structural integrity under the centrifugal load at 
120% overspeed.

Meta-model-based sensitivity analysis and 
optimization
With the scripted analysis routine as outlined above, Motor-
CAD is used to establish a full machine characterization for 
every demanded design variation in a few minutes. From 
each analysis step the characteristic key values are collect-
ed in optiSLang for the generation of a comprehensive set 
of response surfaces, which offers – if good enough by CoP 
– the potential to conduct the entire design space explora-
tion and optimum search on one single MOP in one run.
 After conducting an advanced Latin hypercube sam-
pling (LHS) design variation study of 400 points, 14 designs 
were sorted out for failing to meet basic torque require-
ments, leaving 386 useful designs for entering the data-
base for meta-modeling. Figure 5 shows the CoP matrix as-

beyond the cooling capacity. The characteristic line of peak 
performance shows operating points which can be upheld 
for short time periods, typically up to 30 seconds. The con-
tinuous performance curve represents the envelope of all 
operating points within the machine’s thermal limit, i.e. all 
feasible steady-state operating points where the dissipated 

Fig. 1: Motor cross section geometry: Slot Depth Ratio = Slot Depth / (Slot 

Depth + Stator Back Iron Thickness) | Slot Width Ratio = Avg. Slot Width / (Avg. 

Slot Widt + Stator Tooth Thickness | Split Ratio = Stator Inner Diameter / Stator 

Outer Diameter

Fig. 2: Schematic of scripted Motor-CAD evaluation of one single design

Fig.5: CoP matrix

Fig. 3: Short-term and continuous performance envelopes

Fig.4: Effi ciency map with overlaid WLTP-3 duty cycle
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to being right on the limit in terms of “volume” (visible) the 
points were pushed right onto the “cost” limit (not depicted) 
by the optimizer. In terms of “effi ciency” there is a visible small 
offset between the MOP-based ARSM optima and the validator 
points which reminds that any MOP is only an approximating 
model. In terms of “cost” and “volume” the validator offsets 
were found to be quite infi nitesimal which can be attributed 
to the little complexity of the quantities going into these ob-
jectives. From these six designs the one with cost < 224 and 
volume < 15.3 is furnishing the plots in fi gures 3 and 4.

Summary
The case study presents a parametrized permanent magnet 
motor model and outlines its script-driven electromagnetic, 
thermal, and performance map evaluation in Motor-CAD. 
This machine simulation setup allows a full optimal layout 
procedure based on one step of sensitivity analysis and one 
step of MOP generation. Insight-seeking exploration of a 
very broad design space and (more or less) constrained op-
timization can all be conducted on Metamodels of Optimal 
Prognosis. Conscious steps of constraint sharpening, Pareto 
front generation, and deliberate trade-off solution choice are 
outlined. The intention is to show how benefi ting from ef-
fi cient Motor-CAD modeling techniques in combination with 
optiSLang algorithms and automation features enables to 
progress the best practice for ab initio electric machine lay-
out towards fewer decision points and greater objectivity.

Authors // Nicolas Rivière, James Goss (Motor Design Ltd.),
Markus Stokmaier (Dynardo GmbH)

objective into constraint yields a single-objective criteria set al-
lowing the use of effi cient deterministic optimizers and allows 
to achieve the series of optima added into the objectives plot 
of fi gure 9. Based on two selected steps of the cost limit and 
three steps of the volume limit (dashed grey lines), and feed-
ing it with a constraint-fulfi lling Pareto-effi cient start design, 
optiSLang’s ARSM algorithm was run six times and yielded 
six converged solutions. These six quintessential parameter 
combinations were fi nally validated by conducting additional 
full Motor-CAD evaluation of the designs. The simulation out-
comes in terms of the two Pareto objectives “effi ciency” and 
“volume” are appearing as “validator” points in fi gure 9. Analog 

ure 8, and this fi nally reveals the well-known engineering 
goal confl ict for permanent magnet motors, that extremely 
high torque and effi ciency performance in combination 
with small motor size can only be reached by increasing the 
cost-driving content, the rare-earth magnets.

The Pareto fronts in fi gure 8 contain between 34 and 51 de-
signs, each front being the result of an EA run consuming 
around 104 MOP function calls. It is clear that continued evo-
lutionary optimization will be able to resolve the Pareto fronts 
more and more fi nely and push the structures forward by a few 
more increments. Based on a MOP solver the exercise does not 
have to be computationally burdensome. However, as the ten-
dency caused by the cost limit has already become apparent, 
and as a small and well-defi ned set of characteristic designs 
is most of the time preferable over a large set of stochastic de-
signs, this case study concludes by presenting a fi nal stage of 
single-objective optimization (SOO) runs: Just as the cost pa-
rameter was transformed from objective into limit to get from 
fi gure 7 to 8, the transformation of the motor volume from 

the algorithms to fi nish with not quite competitive designs. 
As no simulations are necessary, these valuable what-if 
tests for the purpose of orientation in the design space are 
generally quick to conduct. In this case study, after going 
through a few setup alternatives, the set of criteria with 

three objective functions depicted in fi gure 6 was found 
to be challenging while at the same time yielding the well-
interpretable Pareto front of highly competitive designs 
shown in fi gure 7.

While the trade-off between the motor effi ciency and its 
volume is directly revealed by the Pareto surface in the 3D 
space, the dependency on the material cost (volumes times 
price of steel, copper & magnet) seems little and the sur-
face appears almost fl at in that direction. By taking the cost 
parameter as constraint instead of objective, it is possible 
to generate linear Pareto front structures in a 2D objective 
space. A plot compiling fi ve such Pareto fronts from inde-
pendent evolutionary algorithm (EA) runs is depicted in fi g-

Fig. 8: Set of several two-objective Pareto fronts

Fig. 9: Validator designs added to the Pareto front plot
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Fig. 6: Optimization criteria

Fig. 7: Pareto front as result of running an evolutionary algorithm (EA) on the MOP
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Airbus and Dynardo are developing Data-based models for dynamic systems to be used in real-time tests. The aim is 
a decisive contribution to the digitization of work processes and an increasing effi ciency in development and testing.

MODELING TEST RIGS FOR AIRPLANE HIGH-LIFT 
SYSTEMS BY DATA-BASED MODELS

RESEARCH & DEVELOPMENT // AEROSPACE INDUSTRY 

Aircraft High-Lift System
The High-Lift System (HLS) of an aircraft has the task of gen-
erating additional lift in various fl ight phases. In aircraft devel-
opment, on the one hand, it has to be designed for optimum 
take-off and landing behavior, and on the other hand it has to 
offer the lowest possible air resistance during the fl ight phase. 
In addition to aerodynamic effi ciency and fl ight performance, 
functional safety is a key development criterion. 
 Fig. 1 shows the control of the leading edge panels 
(slats) and trailing edge panels (flaps). The commanded 
position is transmitted from the cockpit via the Slat Flap 
Control Computers to the drive units of the transmission 
system for the slats and for the flaps. This means that the 
flaps on both wings are usually moved symmetrically. 

High-Lift Test Center in Bremen
Since the beginning of the A380 high lift testing in 2001, 
the Airbus High-Lift Test Center is based in Bremen. In a 
10.000 sqm hall, high lift systems for all Airbus A/C models 
are tested. The main activities of the High-Lift Test Center 
in Bremen are the integration of the HLS on test rigs, the 
implementation of the HLS certification test program and 

the execution & analysis of the necessary tests for release 
of the HLS for the “First Flight” and for “Entry into Service”. 
 Since 2015, Dynardo, the Airbus High-Lift Test Center 
and its partners Airbus Group Innovations Hamburg, P3 
Group Hamburg and MSC Software Munich have been run-
ning research projects to introduce accurate and fast data-
based models into virtual test environments. The current 
project AGILE-VT / ViSA, funded by the Federal Ministry for 
Economic Affairs and Energy (BMWi) under call no. Lufo 
5.3, aims at the advancement of such models for dynamic, 
interactive application within a real-time environment. 

Test Methods 
There are different methods in place for the testing of HLS.

1. Physical benches for testing of system components
As shown in Fig. 2, physical benches are used for the certifi ca-
tion of high-lift systems. Original components are installed in 
aircraft-type specifi c test rigs. The physical benches are also 
required for later verifi cation of model extensions. To comply 
with the obligation to provide evidence to the authorities, 

these tests have to demonstrate that all system requirements 
have been met. For this purpose an intensive test campaign as 
part of the type certifi cation is necessary. 
 The advantages of physical tests are, on the one hand, 
that the test setup is a representative equivalent of the air-
craft and the results obtained are accepted by the authorities. 
On the other hand, each aircraft-type requires its own highly 
complex test rig, whose installation and maintenance is very 
cost & time intensive. Original components must be used 

which may not be available during the early development 
phase. The range of application of physical tests is limited by 
the mechanical construction; changes of the test rig are only 
possible by complex reconstructions.

2. Functional models for testing the function and logic of 
the control computers
Simulators are used to test the HLS control computers in a 
simulated aircraft environment. Original parts are simulated 
by software modules. Simplifi ed models can be used for the 
purely functional simulation, hence detailed modelling of 
physical behavior must not be considered. This kind of test 
enables a high degree of automatization and real-time capa-
bility, which corresponds to a typical clock cycle of 2ms. Func-
tional or logical tests are conducted that way, e.g. the checking 
of threshold values, time spans for certain processes, etc..

3. Virtual tests using detailed simulation models 
Virtual tests are used, for example, for experiments which 
cannot be performed on the physical bench. Figure 3 shows 

an example of a simulation with wing bending (large defor-
mations). Modifi cation of test properties such as stiffness, 
friction or damping can be easily implemented without 
rebuilding the virtual test rig. In order to simulate entire 
motion sequences, the simulation models include both the 
respective aircraft components and the test rig itself (see 
Title Image). 
 Disadvantages of virtual tests are high computing 
times, which, on the one hand affect the waiting times and 
on the other hand prevent the real-time capability. A physi-
cal reference system is always necessary to verify or opti-
mize the accuracy of the virtual model.

Data-Based Models
In this context, Data-Based Models (DBM) are purely math-
ematical models for dynamic system reactions, without 
physical modeling. They thus differ from so-called Reduced 
Order Models on a physical basis. The DBM are exercised 
on the basis of given data. In the ViSA project, no real ex-
periments are used for the training, but virtual experiments 
with a precise simulation of the High-Lift system. This al-
lows a large amount of data for the training and the target-
ed generation of additional support points in areas where 
the accuracy must be increased. 
 Of course, the detailed models must also be able to repro-
duce the experiment exactly in order to provide high-quality 
training data for the DBM. It is possible to use parameter iden-
tifi cation methods to adapt the detailed models to experi-
mental data so that they deliver the most realistic results pos-
sible. However, they are usually much too complex to interact 
with a test rig in real time. DBM are also advantageous for the 
investigation of parameter uncertainties or tolerances within 
the framework of a variance-based robustness analysis. This 
allows the infl uences of tolerances or parameters which are 
diffi cult to measure (such as damping or friction) on the sys-
tem behavior to be determined quickly, thus enabling more 
robust and mature systems to be developed.
 A fi rst concept of the DBM was developed in the context 
of a preceding project [1], [2]. These developments led to the 
Field Metamodel of Optimal Prognosis (F-MOP), a module of 
Statistics on Structures (SoS), which can be easily used in op-
tiSLang via the MOP node. 

Fig. 1: Principle structure of the High-Lift System (HLS) Fig. 3: Model of the A350 wing, simulation of wing bending

Fig. 2: Test rig of the A380. In the front, drive systems and load cylinders to 

simulate the air load.
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The method of the model approach is to generate a Design 
of Experiments (DoE) out of the input parameters and to 
calculate the time series of the responses of the simulation 
model. The loads of the simulation model are given by the 
considered virtual experiment. SoS develops the signals by 
Karhunen-Loève decomposition into a series of invariant 
form functions scaled by variable amplitudes. The well-
known MOP algorithm generates metamodels of the ampli-
tudes depending on the input parameters. The MOP solver, 
which in turn calls a SoS library, can be used to generate the 
corresponding signals for new parameter sets within one 
step. The limitation of this approach, however, is the fi xa-
tion of the signals over the entire duration of the process. In 
this sense, the model is static or time-invariant. 
 In order to integrate the DBM into a system as a com-
ponent, e.g. to replace part of a test rig as a software-in-
the-loop, it must be able to react to changing loads. In ad-
dition, the model must also react dynamically to changing 
parameters for simulating experiments such as artifi cial 
actuator failure or wing tip break.
 The further development to a dynamic DBM requires a 
time integration. In the fi rst step, the DBM is again trained 
on the basis of the transient time series resulting from a 
DoE of the parameters. Here, unit pulse loads are applied to 
the simulation model. In a second step, the displacements 
in the time domain are determined by numerical solution 
of the Duhamel-Integral. The approach bases on the as-
sumption of any load time series as a chain of impulses. The 
time series of the displacements result approximately from 
summation of the impulse responses, starting with the cur-
rent time step and scaled by the current external load [3]. 
This solution is valid actually only to linear, time-invariant 
systems with one degree of freedom. If the system pa-
rameters change, the system is no longer in balance. Even 
though, it is easy to determine the disequilibrium by sum-
ming the internal and external forces and to minimize it by 
simple iteration within the time steps. This allows the dy-
namic DBM to respond not only to changing loads, but even 
more to weak non-linearity. The formulation of this balance 
correction requires an insight into the physics of the sys-
tem, so it is no longer a purely mathematical model. How-
ever, it should be emphasized that this error correction does 
not consist of a comparison with a reference solution, but 
is only generated from information provided by the DBM 
itself. In literature further Duhamel solutions for other dif-
ferential equations can be found. 
 During application, usually, one has to deal with mul-
tiple degree freedom systems. If there are few excitation 
points and also the structural responses are to be evaluat-
ed at few points, the Duhamel approach can still be used. 
It can be shown that coupling terms can be considered as 
single degree of freedom systems, too. The solutions for 
the respective degree of freedom and coupling effects 
can be superposed. So, one has to create a corresponding 
number of DBMs for all combinations of excitation and 
evaluation points.

Demonstration Example
The effectiveness of the DBM approach will be illustrated us-
ing a simple test example. A hydraulic load cylinder with a 
connected single mass oscillator (“Structure”) is considered 
(see Fig. 4). A force requirement is modifi ed by the cylinder 
due to internal friction and damping as well as the adiabatic 
effect and passed on to the single mass oscillator. The feed-
back of the reaction of the single mass oscillator to the cylin-
der is effected by displacement and velocity. 

The single-mass oscillator is simulated by a DBM that inter-
acts with the load cylinder. For the training of the DBM, vir-
tual experiments with Simulink were performed, varying the 
system parameters stiffness K, Coulomb’s friction C, viscous 
damping D and mass inertia I. As a test case, a load is applied 
as a ramp between 0.5 sec and 1.5 sec and removed between 
10 sec and 11 sec. In addition, there is a 50% jump in stiffness 
at 5 sec (see Fig. 5). 
 The entire system was simulated with Simulink as a ref-
erence. To use the DBM, Dynardo’s F(ield)-MOP-solver library 
is linked to Matlab and the interaction between load cylinder 
and DBM is simulated there. Figures 6 and 7 show the ex-
cellent agreement between the reference solution and the 
dynamic DBM.

Conclusions and Perspectives
Data-based models are able to simulate dynamic struc-
tures fast and accurately. In addition to the use of DBM in 
interaction and thus as an extension of physical or func-
tional experiments, they also enable rapid uncertainty 
analyses to prove the expected function of components. 
The models presented here are mathematical in nature, 
in contrast to e.g. Reduced Order Models. Through the ex-
tension by a time integration, the simulation of dynamic 
structures is possible. The transfer to other physical phe-
nomena, e.g. temperature flow in motors and control 
units, is supposed to be possible. 
 In a previous project, data-based models were devel-
oped, which were able to simulate the detailed physical 
behavior of a HLS transmission in connection with model 
uncertainties (e.g. friction, damping) in the virtual test. The 

execution speed could be increased by DBM up to real-time, 
i.e. 500 cycles per second, while maintaining accuracy in 
comparison with physical tests. 
 The current project aims at replacement of a physical 
component at the test rig by a DBM. The behavior of struc-
tural components such as landing fl aps is to be simulated 
using DBM on the test rig, Fig. 8. Structural components are 
required for testing system components. They represent the 
passive aircraft environment controlled by the system com-
ponents.
 By using DBM in aircraft development, experiments 
can be carried out much faster and more fl exibly. The con 
struction of the test rig is simplifi ed by simulated structural 
components and is more fl exible for different aircraft types 
by simply modifying the DBM. Both rig-like and aircraft-like 
tests are available. The former also serve the planning and 
validation of physical experiments. Aircraft-like tests can be 
performed early in the development phase even before origi-
nal physical components are available. This will signifi cantly 
reduce development time and offer the opportunity to in-
crease the product maturity.
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Fig. 4: Demonstration model; component “Structure” is represented by a DBM

Fig. 5: Transient load on the cylinder and stiffness of the single mass oscillator

Fig. 8: Use of DBM at the HL test rig

Fig. 6: Reference solution for the complete system consisting of load cylinder 

and single mass oscillator

Fig. 7: Simulation of the single mass oscillator as dynamic DBM
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With a coupling of ANSYS Maxwell and optiSLang, it is possible to obtain geometric improvements of an actuator by 
optimizing the shape and level of its characteristic force curve.

OPTIMIZATION OF AN ACTUATOR MAGNETIC FORCE 
WITH OPTISLANG

CUSTOMER STORY // AUTOMOTIVE ENGINEERING 

The system, objective and constraints
With the possibility of combining Maxwell and optiSLang, 
the optimization expertise can be used to improve actua-
tors for Hilite products. In following, an example will show 
how the combination of ANSYS Maxwell and optiSLang was 
used to optimize the magnetic force curves and to improve 
valve performance and behavior.

Issue
Hilite produces valves for the usage in automatic and 
double clutch transmissions (DCT). They contain different 
valves with different tasks, which usually are optimized 
separately. For future products a new actuator had to be 
designed that could be used in multiple valves. Two of them 
are gear shift and clutch control valves; they are shown in 
Figure 1. Both curves, the one for the pressure in top and 
the other one for the fl ow valve in the bottom have to be 
actuated optimally. Therefore, different criteria of the dif-
ferent valves ensure the possibility to optimize the new ac-
tuator and guarantee the functionality at the same time.
 ANSYS Maxwell is able to compute magnetic forces, 
which are part of the main objective of the optimization 
task. Figure 2 pictures the simulation model that is used to 

compute the axial magnetic force on the armature. Due to 
already existing analyses, the number of parameters that 
mainly infl uence the force could be reduced to fi ve. All im-
portant parameters are located within the same region 
of the valve. The parameters infl uence the characteristic 
curves, which are shown in the fi gure as well.

Criteria for the optimization
During the development process, the changes in the initial 
design lead to various optimization tasks. Therefore, objec-
tives, depending on characteristic pressure curves of the 
system, have been generated. The most important criteria 
are marked in different colors on the fi eld of characteris-
tic curves in Figure 3. Here, the criteria 1 to 7 are used as 
constraints to get the curves in the optimal direction. The 
criterion 8 is set as an objective. 
Number 1 (green) is calculated between two specifi c stroke po-
sitions for two different electric currents. This delta of the mag-
netic force is important for the shape of the valve´s Q-I curve. 
Number 2 (dark blue) limits the force at zero stroke and 
maximum current to a specifi c minimum. This constraint is 
used as an objective for the fi rst optimization with an evo-
lutionary algorithm. 

Number 3 (yellow) ensures a minimum amount of force at 
maximum stroke for low current. Furthermore, the slope is 
restricted as well. 
Number 4 (light purple) sets a lower limit for the magnetic 
force at maximum current that effects all stroke positions. 
Thus, the magnetic force always keeps a minimum level. 
Number 5 (light blue) works like number 4 but is valid for 
an intermediate current. 
The Number 6 constraint (dark purple) limits the slope of the 
curve to a minimum in a specifi c region of small stroke posi-
tions. Number 7 (black) operates similar to constraint 6 but 
the region contains middle stroke positions. 
Number 8 (red) is an objective and aims to maximize the 
magnetic force at large electric current in an area of large 
stroke.

Parametric system
The integration of the simulation program Maxwell into 
the optimization program optiSLang can be done in vari-
ous ways. One way would be using the AEDT integration 
that is available in optiSLang since version 7.3. It is easy to 
create and performs very effectively. As the only problem 
so far, there is no comfortable way to work with signals.
 The only way to optimize the characteristic curves 
of the magnetic force with Maxwell and optiSLang is to 
use a script-based integration. With this method, it is 
possible to let the constraints and objectives refer to the 
curves and picture them inside the optimization analysis. 
Moreover, with the amount of different stroke positions 
and currents that need to be computed for every design 
in order to create an accurate signal to work with, the 
script based integration method is almost as efficient as 
the integrated AEDT version.
 In order to successfully build a working optiSLang 
system for Maxwell computations, one needs a working 
project (model, parameters, setup and results) at first. 
With the help of a Maxwell command, it is possible to ex-
tract the geometry parameters and the defined respons-
es of the results in separate files (input, output). These 
files were used to set up the parametric system.
 Figure 4 (see next page) shows the integrated Input, 
Solver and Output of the optiSLang system. The Maxwell 
files were implemented with a common text based solv-
er, for example ANSYS Classic (Text Input – Batch Solver – 
ETK). The input node detects the input parameters. In the 
ETK node, one can define the force curves as signals and 
the batch solver activates the solver script to run Max-
well with different designs.
 For every design five currents with up to 14 stroke 
positions per current are calculated, which sums up to 28 
calculations for each design. The handling of these dif-
ferent computations are done with “Optimetrics” in Max-
well, which can be used with the script connection.
 Figure 5 (see next page) shows the three most impor-
tant parts of Maxwell, highlighted in blue frames. The mod-
el area “MX2D (a)” contains the variable geometry param-

Fig. 3: Field of magnetic force over stroke with criteria for optimization

Fig.1: Hilite gearshift valve (top) and clutch control valve (bottom) for DCTs

Fig. 2: Parameterized Maxwell model with force curve
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eters that optiSLang changes and imports into the Maxwell 
fi le for calculation. In “Optimetrics (b)”, the different varia-
tions of stroke and current are listed and set up for compu-
tation. The pre-defi ned characteristic curves for the output 
extraction to optiSLang are saved in “Results (c)”.

Computations
The integration of Maxwell into a parametric system 
in optiSLang helps to find optimal designs for actuator 
valves. The search for the best design includes a sensitiv-
ity analysis that identifies the important parameters and 
their mutual interplay. The information collected in the 
sensitivity analysis makes it possible to use the MOP- and 
Maxwell-Solver effectively in the optimization. The result 
of the optimization is implemented in system simulation 
models to obtain information about the performance of 
the valves.

Optimization
In the following Figure 6 one can see the CoP-Matrix as a 
result of the sensitivity analysis using the “Metamodel of 
Optimal Prognosis” (MOP). Here, the fi ve geometry param-
eters are listed in the fi rst row. The columns below express 
the infl uence on the change of the magnetic force at certain 
positions. The fi rst and second column show these positions, 
which are combinations of current and magnetic stroke that 
defi ne 28 output parameters. All strokes of every electric cur-
rent combined results in a magnetic force curve that is differ-
ent for each design. The different parameters have different 
infl uences for different currents and strokes. The higher the 

percentage the higher the infl uence for the 
calculated variation. The parameter “Total” at 
the end of the matrix tells the overall qual-
ity of the meta-model (100% means no er-
ror). The fi rst three parameters “cone offset”, 
“tip thickness” and “cone angle” have a large 
infl uence on the variation of the axial mag-
netic force at certain stroke positions. “step 
height” only has an infl uence on the force at 
small strokes and “pole stopper offset” has 
small infl uence overall.
With all the informations from the sensitivity 
analysis about force, stroke and current stored 
in the MOP, a usage in the optimization can 
lead to good and fast results. So, for the op-
timization of the magnetic force curves, Max-
well as well as the MOP was used as a solver.
The fi rst optimization was done with the 
evolutionary algorithm (EA). It resulted in a 
pareto front which is shown in Figure 7 as 
a red line. As already mentioned in Chapter 
“criteria for optimization”, the objectives of 
the EA were maximization of the force at 
zero stroke (2) and maximizing the force at 
high stroke (8). The results show the pos-
sible variation of the curve, which were 
used as start designs for the stricter single 
objective optimization with the adaptive re-
sponse surface method (ARSM).
 During the single objective optimiza-
tion, two designs with different constraint 
values showed very good results. The history 
of these designs “ARSM21” and “ARSM51” is 
shown in Figure 8.
 Figure 9 (see next page) shows the char-
acteristic curve of the magnetic force over 
the magnetic stroke for 0.4 A, 1.0 A and 1.5 
A. The curve of the reference design and the 
fi rst EA are plotted with dashed lines. The 
optimization result “ARSM21” is depicted in 
blue and “ARSM51” in red. Due to the suc-
cessful optimizations and the proper set-
tings and defi nitions of the relevant criteria, 
all optimized designs got improved curves 
when compared to the base model (Refer-
ence). The design “ARSM21” can score with 
the largest force which occurs at 1.5 mm 
stroke. The design “ARSM51” however has 
a long smooth slope until the maximum, 
which is at 1.7 mm stroke.

System simulation
Both optimized designs “ARSM21” and 
“ARSM51” exhibit individual qualities and 
thusly are used in a system simulation that 
evaluates the valves behavior. 

Fig. 8: History of the optimizations with adaptive response surface method

Fig.4: optiSLang System with Maxwell integration

Fig. 5: Computation order in Maxwell with optiSLang; a) Input parameter cre-

ating geometry, b) Setup of variations, c)  Defi nition of characteristic curves for 

output extraction

Fig. 6: Coeffi cient of Prognosis of the force in different positions for the input parameters, for dif-

ferent positions of the input parameters see also Fig. 2

Fig. 7: Pareto front of the evolutionary algorithm (left) and its two objectives (right)



Customer Story // Automotive Engineering

Using ANSYS and optiSLang, the design of a turbofan jet engine was improved regarding polytrophic effi ciency and 
mechanical stresses in the fi llet and the blade of the fan.

MULTIDISCIPLINARY OPTIMIZATION OF A CIVIL 
TURBOFAN JET ENGINE

CASE STUDY // TURBO MACHINERY 

RDO-JOURNAL // ISSUE 2/2019 2322

and optimizations with an acceptable numerical effort. To 
satisfy these requirements, the workfl ow is used to run a 
sensitivity analysis fi rst in order to calculate meta-models 
for all relevant result quantities. With the help of the meta-
models, a fast pre-optimization by using different objectives 
was possible. By using only the important parameters indi-
cated by the sensitivity analyses, an effi cient optimization 
algorithm could be chosen in order to run a fi nal direct opti-
mization with the numerical model.

Civil turbofan jet engine: conceptual design 
method and numerical CFD and FEA model
First, conceptual design methods were used to determine 
the aerodynamic characteristics. With the help of the soft-
ware GasTurb, the main dimensions of the fan could be 
calculated based on the requirements of the engine (e.g. 
pressure ratio Π, Bypass ratio). Afterwards, the blade geom-
etry (e.g. camber line, blade thickness) and blade angles are 
calculated as well as the inlet geometry is designed. 
 A jet engine operates at a great variety of different op-
erating conditions. Depending on the desired travel Mach 

Motivation
This article contributes to the fi eld of multidisciplinary opti-
mization of turbomachines. Here, the focus is on the fan of a 
civil turbofan jet engine with a high bypass ratio. Conceptual 
design methods were used to determine the aerodynamic char-
acteristics. For more detailed analyses, a numerical 3D-CFD and 
3D-FEA model was set up for the take-off conditions of the fan 
(close to stall). Based on these results, the design was improved 
iteratively and manually regarding polytrophic effi ciency and 
mechanical stresses in the fi llet and the blade of the fan. 
 Recent developments in the product development process 
go beyond successive simulation and analysis of individual 
design solutions and results. Computational approaches for 
sensitivity analysis, optimization and robustness evaluation 
integrate a variety of simulation results to foster system un-
derstanding for engineering design. 
 The automation of the process and the numerical effort 
are challenges for such methods. The automated workfl ow is 
implemented in ANSYS optiSLang and ANSYS Workbench that 
includes a stable parametrized geometry model, automated 
meshing, CFD runs and post processing. 
 Due to the numerical demanding CFD simulations, an 
effi cient method is necessary to enable parametric studies 

The difference between “ARSM21” and “ARSM51” mainly oc-
curs between 0.9 A and 1.3 A. The appropriate characteristic 
curve of the gearshift valve shows Figure 10 (see next page) 
with different spring confi gurations in the two pictures. 
Both valves with optimized magnets reach the fi rst peak in 
the Q-I curve earlier than the reference design and continue 
decreasing slower towards the minimum. In the second 
peak with currents larger than 0.9 A, “ARSM21” equals the 
base model and “ARSM51” remains below the other curves.
 Both new actuator designs allow the usage in different 
valve types. The optimized designs achieve slightly better 
results than the reference in the system simulation of the 
TGP that is pictured on the top side in Figure 11. In the VKP 
on the bottom, the optimized designs have straight curves 
and fewer oscillations, something that is not visible in the 
reference design.

Conclusion
With the possibility of optiSLang and Maxwell working 
together even complex issues can be solved. The example 
shows that the valve can be optimally adjusted to its desig-
nated function and with further developments, even faster 
and better results are possible.
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Fig. 9: Magnetic force with different currents and optimization Designs

Figure 10: Flow rate over current for optimized designs ARSM21 & 51 with 

system simulation of gearshift valve

Figure 11: Pressure over current of TGP and VKP with system simulation
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narrow. Thus, they have an infl uence (e.g. ReaktionRatio_o or 
betaIn_o), but not a dominating one. 
 Optional subsequent strategies that derive from the 
analysis are: a) increasing of the number of designs of the 
sensitivity in order to get a more accurate meta-models 
with a higher CoP value (this is very likely since the number 
of important variables is high and only 200 designs have 
been evaluated), b) to conduct a second sensitivity analysis 
in a narrower design space defi ned by the parameters of 
the best designs of the fi rst sensitivity or c) to do a pre-op-
timization on the given MOP and use this improved design 
for a direct optimization. Due to the numerical demanding 
CFD simulations, the third strategy was chosen.

Optimization
The main objective was the increase of the polytrophic ef-
fi ciency. Due to the requirements of the jet engine itself, the 
pressure ratio Π should be above 1,2. Moreover, the unaver-
aged stresses in the blade and the fi llet should not exceed 
1000 N/mm² and due to the tip gap of 6 mm the radial de-
formation of the blade must be under that value.
 The meta-models are used for pre-optimization, since 
the forecast quality of the effi ciency is almost 80%. Differ-
ent formulations of objectives and constraints can be eas-
ily tested, adapted and fast evaluated. In the left Figure 4 
the convergence of the Evolutionary Algorithm by using the 
MOP and the improvement of the objective is shown. This 
calculation of more than 3500 design evaluations is done in 
minutes, while one CFD run takes hours. As shown, the al-
gorithm starts in an area with lots of constraints violations 
(red) and moves in a subspace with less constraint viola-
tions (green) in the local search at the end. The best design 

for the automated meshing of the fan domain. In CFD Post 
the output parameters like Π (pressure ratio) and polytro-
phic effi ciency are defi ned.
 Afterwards, a simplifi ed FEA in ANSYS Mechanical is 
added to avoid implausible geometries from the structural 
mechanics point of view within the optimization process. 
In order to accomplish a reasonable numerical effort, a 
solid body is modeled instead of using a skeleton coated 
with CFK. Moreover, the deformation and the stresses in 
the blade and the fi llet are of prime interest, the connec-
tion between the blade root and the hub disc is neglected 
in this analysis. The imported loads for the fan are the pres-
sure on the blade coming from the previous CFD calculation 
and the rotational velocity. The cylindrical support and the 
cyclic symmetry are the boundary conditions.
 Based on these results, the design was improved iterative-
ly and manually regarding polytrophic effi ciency, Π (pressure 
ratio), total deformation and mechanical stresses in the fi llet 
and the blade of the fan. Figure 2 depicts the fl ow around the 
airfoil at different operating points and span locations. It can 
be proven that the fl ow meets the blade at the right angle.

Results of the sensitivity analysis
As a framework for geometry model, meshing and solver 
runs (including the mapping of the pressure fi eld to the 
FEA) the ANSYS Workbench is used. This model was inte-
grated in ANSYS optiSLang for an optimization workfl ow.
 In order to ensure that the geometry and mesh can be 
generated and the solver covers the whole design space prop-
erly, a sensitivity analysis was carried out in ANSYS optiSLang. 
The design space was defi ned by the lower and upper bounds 
of the parameters. A sensitivity analysis scans the space and 
evaluates the variance of the inputs (e.g. geometry parame-
ters) in relation to the output parameters (e.g. Π pressure ra-
tio). For this purpose, the Design of Experiment is generated by 
an optimized Latin Hypercube Sampling [1]. For each sample, 
the output parameters are evaluated by the solver. With help 
of the Metamodel of Optimal Prognosis (MOP) approach [2] 
an optimal mathematical surrogate model (meta-model) was 
generated for each scalar response value. 
 In total, 188 of 200 designs for the sensitivity analysis are 
calculated successfully. In order to ensure the evaluation of 
the convergence, for each design relevant physical quantities 
are extracted. Consequently, 149 designs could be indicated 
as converged and after neglection of outliers 138 designs are 
used to generate the MOP. Figure 3 shows the MOP for the 
polytropic effi ciency with a CoP of 78% which used 18 input 
parameters (that have a signifi cant infl uence on the response) 
to build the meta-model. The leading edge radius at the hub 
(LERadius_i) and the length of the airfoil at layer 3 (LAirfoil_
Layer3) have the highest infl uence for the given parametriza-
tion. It has to be noted that the importance of parameters will 
change by using different parameter variation windows. In this 
example, the design was manually pre-optimized and there-
fore the variation window for the blade angles was set rather 

number, the spool speed and the mass fl ow rate change. 
Since the highest mass fl ow rates occur during the take-off 
(close to stall), these fl ight and thermodynamic conditions 
have been used in the design process. 
 For detailed analyses, a numerical 3D-CFD and 3D-FEA 
model was set up. For that, the parametric geometry was 
designed with the ANSYS BladeModeler. Global parameters 
for describing the main dimensions of the fan were kept con-
stant, while 25 parameters could be used to defi ne the shape 
of the blade itself. This included 5 parameters to describe the 
meridional plane, 8 parameters for the blade angles, 8 param-
eters describe the blade thickness and one parameter for the 
number of blades, blade lean circumferential and fi llet radius. 
 The appropriate defi nition of parameter dependen-
cies and bounds are essential in turbomachinery optimiza-
tion. Therefore, usually the parametrization is not suitable 
after the fi rst attempt. Consequently, for ensuring a stable 
geometry generation a Design of Experiments only for the 
geometries itself is useful. By statistical evaluation of failed 
designs, additional dependencies can be implemented, exist-
ing dependencies adapted and parameter bounds adjusted.
 Exemplary for this parametrization is the meridional 
plane and the blade angles, which are explained in the fol-
lowing in more detail. Five airfoils at different span locations 
defi ne the blade. Each airfoil has a length that is param-
etrized but not all are allowed to change within the Design 
of Experiments. Only the length at hub, shroud and the layer 
in the middle are adopted. The other lengths are adjusted ac-
cordingly. The leading-edge blade angles of the airfoils are 
are a second example, which varied independently at hub 
and shroud within the Design of Experiments. The other 
leading-edge blade angles are parameterized, but in order to 
ensure useful designs only hub and shroud are varied inde-
pendently. The three angles at the layers in between are var-
ied as parameters, but only in percentage within the current 
values of hub and shroud.

The boundary conditions of the steady-state analyses of a 
periodic segment are shown in Figure 1. At the inlet, fl ight 
speed and ambient temperature for the take-off conditions 
are defi ned. The outlet is split in the bypass with static pres-
sure and the LPC (low pressure compressor). At the open-
ing, the ambient pressure is set. The meshing for the un-
changed parts was conducted in ICEM. TurboGrid was used 

Fig. 1: CFD boundary conditions

Fig. 2: Flow around the airfoil at different span locations and operating points 

Fig. 3: Meta-model (top) and important parameters (bottom) 
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nario the 6-Layer model can be used [Bock]. For demonstra-
tion purposes, only the road layer (1) and the moving ob-
jects layer (4) are used for the description. With the help of 
the corresponding parameters, these logical scenarios can 
be varied in their characteristics. Hence it is possible to vary 
speeds of the vehicles, distances from objects or the dy-
namics of lane change maneuvers. These so-called specifi c 
scenarios resulting from different parameter combinations 
are simulated and the system reaction of the ADS is evalu-
ated. This is done through evaluation criteria that refl ect 
the criticality of a specifi c scenario. For example, the Time-
To-Collision (TTC) or the distance between two vehicles can 
be used as evaluation criteria.
 The intention of the methodology described in the fol-
lowing is to determine the probability of failure for each 
logical traffi c scenario. Therefore, the parameter space is 
searched with an intelligent algorithm to determine the 
probability that a critical situation or even an accident can 
occur. The probability distributions of the input parameters 
as well as the probability of occurrence of the respective 
scenario are determined based on real measured data and 
by using the PEGASUS database [Pütz].

Scenario-based driving simulation 
The validation of Advanced Driver Assistance Systems is per-
formed with a scenario based simulation. Simulation in this 
context means that the control device, on which the ADAS 
are running, is present as a simulation tool, running the real 
ECU code and thus software-in-the-loop simulations are per-
formed. All inputs for the simulated controller are generated 
by a simulation environment. These include sensors, vehicle 
data as well as data from other ECU’s installed in the vehicle. In 
order to generate plausible input data, a virtual environment 
is simulated in which the system vehicle moves and other road 
users (objects) are detected by sensor models. Thus, the virtual 
world is processed and captured, and control quantities calcu-
lated therefrom are delivered back to the vehicle model.
 For the scenario-based approach, a number of logical 
scenarios describable by parameters are defi ned [Menzel]. 
The scenarios are derived from the system requirements, 
from the research project PEGASUS (Joint project to develop 
new methods for validating and testing ADAS) as well as 
observations from the fi eld. A logical scenario is typically a 
specifi c traffi c situation. For instance, a cut in maneuver of 
other objects or a jam end situation on a highway as shown 
in Figure 1 (see next page). To describe such a logical sce-
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were indicated as important in the sensitivity analyses. 
Within a few iterations a further improvement was pos-
sible to an effi ciency of 92,8%, which is an increase of 1,9% 
compared to the manual optimized design. Again, all the 
mechanical constraints were fulfi lled and also the needed 
pressure ratio (Π) was reached. In Fig. 6 the velocity fi eld 
is shown an 0,5 span. In both designs, the fl ow meets the 
blade at the right angle and the maximum velocity is lightly 
reduced in the best design of the optimization.

Summary
A civil turbofan jet engine with a high bypass ratio was man-
ually optimized by conceptual design methods and with 
the help of a 3D-CFD and 3D-FEA model. This design was 
used as a basis for an optimization procedure with the ob-
jective to increase the polytrophic effi ciency while the pres-
sure ratio (Π), mechanical stresses in the fi llet and radial 
deformation had to fulfi ll given constraints. By conducting 
a sensitivity analysis, pre-optimization on the metamodel 
and direct optimization, the polytrophic effi ciency could be 
increased by 1,9% from 90,9% to 92,8% while the given con-
straints were still fulfi lled. 
 A possible next step is to add desired altitudes for the jet 
engine, which means for the optimization to include multiple 
operating points in one design evaluation. 
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has improved the polytrophic effi ciency by 1,7% from 90,9% 
to 92,6% (Fig. 5). After fi nishing the MOP-based optimiza-
tion, the best design candidates need to be validated with 
CFD/FEM runs.
 Based on this pre-optimized design an Adaptive Re-
sponse Surface Method (ARSM) was applied in a second 
step using CFD/FEM design evaluations. The start design 
was the best design from the pre-optimization and the al-
gorithm used the reduced number of parameters, which 

Fig. 4: Convergence history of Evolutionary Algorithms in the MOP (left) and direct optimization using an ARSM algorithm (right)

Fig. 5: Polytrophic effi ciency in optimization process

Fig. 6: Flow around an airfoil at span 0,5: manual optimized (top) and best 

design after optimization (bottom)

Manual optimized Best Sensitivity Opt. on MOP (validated) ARSM (Direct optimization)

Polytrophic Effi ciency [%] 90,94 92,01 92,63 92,83
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last vehicle of the jam in order to perform an accident-free 
braking. In the simulation software the Time-To-Collision 
(TTC) is estimated w.r.t. the given input parameters. We 
consider this TTC as limit state and investigate several limits 
with the reliability algorithms. As input scatter we assume 
nine continuous scattering parameters as lead vehicle and 
jam end speed, pull out time, lead vehicle braking decelera-
tion as well as a lane offsets of the traffi c jam and the lead 
vehicle. The number of road lanes, the lead vehicle class and 
the pull out direction have been modeled with discrete ran-
dom distributions.
 In order to perform the analysis and verifi cation more 
effi ciently, in a fi rst step a global meta-model was created 
based on 1000 samples. In order to obtain more samples 
and thus higher accuracy in the relevant regions a local 
adaptation strategy was used (Adaptive Metamodel of 
Optimal Prognosis, [Dynardo, Most]). Based on this fast 
meta-model we investigated the multimodal and Adaptive 
Sampling Importance Sampling in comparison to the brute-
force Monte Carlo Simulation. In Figure 5 one subspace of 
the 12-dimensional meta-model is shown. As indicated in 
the fi gure, the lead vehicle speed and the jam end speed 
are most important in this scenario. Furthermore, the rela-
tion of the Time-To-Collision and the input parameters is al-
most monotonic. Thus, we would expect to obtain different 
failure regions mainly due to different combinations of the 
discrete parameters.
 In Figure 6 (see next page) the convergence of the mul-
tiple FORM is shown for one specifi c failure limit. It can be 

seen, that the optimizer converged to different reliability 
index values, which correspond to different most probable 
failure points. Altogether, 20 failure points have been de-
tected which are used as sampling centers for the impor-
tance sampling.

different center points and unit covariance in the Gaussian 
space. In Figure 4 the sampling is shown for four individual 
failure regions.
 In order to detect the individual failure regions with 
suffi cient confi dence, we extended the multiple FORM al-
gorithm [Kiureghian]: Based on given start points or an ini-
tial presampling similar to the fi rst iteration of the Adaptive 
Importance Sampling approach, we perform a local optimi-
zation several times. With help of a local gradient-based op-
timizer the closest point, where the limit state turns from 
safe to unsafe and which has the smallest distance to the 
median point on the standard normal space, is detected. 
Since the start points are selected using a density criterion 
by considering the previous optimization runs, we can as-
sure that with a given number of local optimization runs, 
the important failure regions can be found. In case that 
some of the input parameters are modeled with a discrete 
distribution type, the local optimization is performed only 
in the reduced continuous subspace, but different combi-
nations of the discrete values are investigated. 
 After the most important failure regions have been de-
tected, the corresponding most probable failure points are 
used as centers for the sampling densities in the multi-modal 
ISPUD approach. Since the failure probability is not estimated 
by the beta-distance analogous FORM but by the more accu-
rate Importance Sampling, even non-linear limit state func-
tions can be accurately evaluated. Furthermore, the local opti-
mizer needs not to be very accurate in the estimate of the local 
most probable failure points.

Application Example
In this example we investigate the jam end scenario where 
an ego vehicle including a lead vehicle drive to the end of a 
traffi c jam on a highway. At a certain time, the lead vehicle 
will change the lane and the ego vehicle has to detect the 

methods like the First or Second Order Reliability Method 
(FORM & SORM) are still more effi cient than the sampling 
methods by approximating the boundary between the safe 
and the failure domain, the so-called limit state. In contrast 
to a global low order approximation of the whole response, 
the approximation of the limit state around the most prob-
able failure point (MPP) is much more accurate. A good 
overview of these “classical” methods is given in [Bucher].
 In our study we have investigated several methods. 
One reliable and robust method for our application is the 
Adaptive Importance Sampling strategy [Bucher]. In this 
approach an importance sampling density is obtained by 
iterative adjustment of a modifi ed sampling density. 
 This method becomes ineffi cient with increasing num-
ber of random variables due to the less accurate estimates 
of the density statistics. Therefore, it is recommended to 
apply this method for problems with up to twenty random 
variables. Furthermore, it can analyze only one dominant 
failure region. In our studies, where discrete distribution 
types have been used together with continuous random 
variables, we observed an additional numerical effort to ob-
tain a similar accuracy of the failure probability estimates 
as in pure continuous problems. This is caused in artifi cial 
discontinuities of the limit state function in the standard 
normal space as shown in Figure 3. Even for continuous lim-
it state functions such discontinuities occur due to the dis-
crete distributions. This phenomenon causes multiple most 
probable failure points, which makes the normal sampling 
density less effi cient.

On order to overcome the limitation of one dominant fail-
ure region we extended the Importance Sampling using 
Design Points (ISPUD) by a multi-modal density according 
to [Geyer]. The modifi ed sampling density may consist of 
an arbitrary number of individual sampling densities with 

Stochastic Analysis
Satisfying design requirements will necessitate ensuring 
that the scatter of all important responses by fl uctuat-
ing geometrical, material or environmental variability lies 
within acceptable design limits. With the help of the ro-
bustness analysis this scatter can be estimated. Within this 
framework, the scatter of a response may be described by 
its mean value and standard deviation or its safety margin 
with respect to a specifi ed failure limit. The safety margin 
can be variance-based (specifying a margin between failure 
and the mean value) or probability-based (using the prob-
ability that the failure limit is exceeded). In Figure 2 this is 
shown in principle.

Within the reliability method the probability of reaching a 
failure limit is obtained by an integration of the probabil-
ity density of the uncertainties in the failure domain. One 
well-known method is the plain Monte Carlo Simulation 
[Rubinstein], which can be applied independently of the 
model non-linearity and the number of input parameters. 
This method is very robust and can detect several failure re-
gions with highly non-linear dependencies. Unfortunately, 
it requires an extremely large number of model evaluations 
to proof rare events. Therefore, more advanced sampling 
strategies have been developed like Importance Sampling, 
where the sampling density is adapted in order to cover 
the failure domain suffi ciently and to obtain more accurate 
probability estimates with much less solver calls. Other 

Fig. 1: Jam end traffi c scenario on the highway. By altering the input param-

eters this logical scenario can be varied in its characteristics.

Fig.2: Scatter of a fl uctuating response with safety margin (distance between 

mean and the failure limit) and the corresponding probability of failure pF.

Fig. 3: Adaptive Importance Sampling for a linear limit state function consider-

ing discrete random variables, samples in the standard Gaussian space.

Fig. 5: Jam end scenario: adaptive meta-model used for the verifi cation of the 

reliability algorithms

Fig. 4: Importance Sampling using Design Points generated by a multi-modal 

sampling density which consists of several standard normal densities.
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continued until a required accuracy of the probability estimate 
was obtained. The presented approach enables the automatic 
reliability proof of an Advanced Driver Assistance System for 
a specifi c scenario with minimum manual input. However, 
one very important point is the quantifi cation of the input 
uncertainties of the investigated scenario. These assumptions 
strongly infl uence the fi nally estimated failure rate, therefore, 
attention should be paid in order to derive suitable assump-
tions about distribution type, scatter and event correlations 
from real world observations.
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modifying the limit state in the FORM search while keeping 
the original one in the ISPUD sampling. In Figure 8 the results 
are illustrated. It can be seen, that if the density center points 
are shifted inside the failure regions, the number of unsafe 
samples increases which would increase the accuracy of the 
estimated failure probability. Therefore, less samples are nec-
essary to obtain the required accuracy of 10%. In the other 
case, when the estimated failure points and thus the center 
points of the importance sampling densities are located too 
far in the safe region, the number of samples in the unsafe re-
gion decreases and thus the total number of required samples 
in ISPUD increases. Nevertheless, in all three cases the esti-
mate of the failure probability was quite accurate.

Conclusion
In this paper we have presented an automatic approach for 
the reliability evaluation of specifi c traffi c scenarios for the val-
idation of Advanced Driver Assistance Systems. In this analysis 
the control device is represented as a simulation model using 
software-in-the-loop technology. Specifi c inputs of this simu-
lated controller are modeled as random inputs in a stochastic 
analysis. Based on a defi nition of a failure criterion well known 
reliability algorithms could be applied. In our study we have 
used classical Monte Carlo Simulation only for verifi cation due 
to its enormous numerical effort to proof small event proba-
bilities. In order to reduce the number of necessary simulation 
runs, variance reduced importance sampling was applied. For 
this purpose, we used a multiple design point search approach 
to detect the important failure regions. Based on this result a 
multi-modal importance sampling density was automatically 
generated in order to quantify the contribution of each failure 
region to the overall failure probability. Based on a confi dent 
error estimate we could ensure, that the sampling loop was 

is applied on the meta-model only, all together 1000 samples 
for the meta-model plus 5000 samples are needed. However, 
the estimates with the real solver indicate a much larger fail-
ure probability as estimated using the meta-model. Therefore, 
in our applications we always apply the ISPUD approach using 
the direct solver. If the most probable failure points are not es-
timated very accurately, we obtain still valid results since the 
ISPUD algorithms are running the sampling until a certain ac-
curacy of the estimated failure probability is obtained.
 Finally, we investigate the infl uence of the accuracy of ob-
tained most probable failure points. For this purpose, we use 
the meta-model again by considering a failure limit of 0.5s 
for the time-to-collision. We initiate wrong failure points by 

In Table 1 the obtained estimates of the failure probabil-
ity are given for the different limit values. The multi-modal 
and adaptive Importance Sampling strategy are compared 
to the results of the Monte Carlo Simulation. As indicated 
in the table, we could obtain a very excellent agreement 
of the results. As indicated, the multi-modal ISPUD is the 
most effi cient algorithm, especially for small failure prob-
abilities, which is the expected application fi eld. In Figure 
7 the importance sampling density is shown for the three 
most important parameters in the orginal parameter space.
 Next, the multi-modal and adaptive Importance Sam-
pling are applied using the traffi c simulation software directly. 
The Monte Carlo Simulation could not be applied due to the 
large numerical effort. In Table 2 the results are compared. 
Again, the results of both methods agree very well, while the 
ISPUD approach needs less samples. Since the FORM method 

Fig. 6: Convergence of the multi FORM-search assuming a limit of 0.5s for the 

time-to-collision

Fig. 7: Jam end scenario: joint multi-modal

Fig. 8: Infl uence of the accuracy of the obtained most probable failure points using a limit of 0.5s on the meta-model: left – original results, middle – failure points are 

located in unsafe region, right – failure points are located in safe region

Table 1: Estimated failure probabilities for different limit state limits using the global meta-model

Table 2: Estimated failure probabilities for one limit state using the traffi c simulation tool directly

Number of samples Failure probability Coeffi cient of variation Reliability index

Limit TTC = 1.0
MCS
AS
ISPUD+FORM

30.000
8.000
2.000+6.400

1.61*10-2

1.30*10-2

1.70*10-2

4.5%
5.8%
6.8%

2.14
2.22
2.12

Limit TTC = 0.5
MCS
AS
ISPUD+FORM

14.010.000
16.000
4.000+4.500

2.86*10-5

2.85*10-5

3.03*10-5

5.0%
8.4%
8.8%

4.02
4.05
4.01

Limit TTC = 0.4
MCS
AS
ISPUD+FORM

39.420.000
16.000
7.000+5.500

2.54*10-6

2.81*10-6

2.31*10-6

10.0%
9.1%
9.5%

4.56
4.54
4.58

Limit TTC = 0.5 Number of samples Failure probability Coeffi cient of variation Reliability index

MCS Not possible - - -

AS 22.000 5.30*10-3 9.2% 2.55

ISPUD+FORM 5.000 (+4.500 on meta-model) 4.40*10-3 20.1% 2.62
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Simulation task and general procedure

Functionality of a 4/4-way valve
The product at the center of the optimization is a 4/4-way 
valve (FINDEISEN), which is used in mechatronics for the 
automatic gear shifting of a passenger car (see Figure 1). 
The aim of the hydraulic gearshift is to actuate or operate 
the gear adjuster via an electrical control signal (current). 
The gear adjuster is designed with a piston between two 
chambers. In order to move the piston, oil is pumped into 
a chamber (PA, PB), whereupon the pressure rises, a force is 
exerted on the piston and it then moves (gearshift). The op-
posite chamber must be emptied at the same time (BT, AT) 
so that no counterforce occurs. The oil fl ow is controlled via 
the directional control valve by opening or closing the con-
trol edges. By adjusting the fl ow areas, the fl ow rate varies 
according to the orifi ce equation (MATTHEIS, RENIUS) with

  (1)

Q is the fl ow rate, A(X) the open area, dp the pressure dif-
ference and X the stroke. Since the area changes over the 
stroke, the fl ow rate can be adjusted as a function of the 

piston position. To adjust the stroke, a proportional sole-
noid is located on one side of the valve, which generates 
a force as a function of the current. A spring force acts as 
a counterforce ensuring an equilibrium of forces between 
spring and magnet in a defi ned position, depending on the 
magnetic force.

Description of the optimization task
Main objective of the investigation is the increase of the 
fl ow rate through the valve. In addition to the spring and 
magnetic forces, fl ow forces only act on the system during 
the fl ow. These forces generate directional disturbances in 
the dynamic behavior (Q-I characteristic curve) which must 
be kept as small as possible (FINDEISEN, HUGEL). 
 The fl ow forces are only a secondary precondition in 
this investigation. In common designs these are already 
optimized, however they must not be neglected, because 
otherwise already solved problems become visible again, 
e.g. the peaks in the A-branch move apart.
 Figure 2 shows a Q-I curve, where the A-branch (left) 
realizes the PA or BT fl ow and the B-branch (right) generates 
the PB or AT fl ow. Thus four different fl ow areas are relevant 
for the optimization. 
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In the sensitivity analysis, the scalars (and thus the fi elds) 
are varied stochastically in order to simulate the Q-I char-
acteristic curve as a function of the fi eld scaling. Although 
the scaling is not based on an actual geometry fi t, it can be 
used to estimate the potential of each fi eld fi t. 
 Figure 4 shows the Q-I characteristic curve variation 
(signal plot) based on the fi eld scaling factors and the COP 
matrix from optiSLang. The variation ranges of the scaling 
factors are the same, so that their importance can be read 
directly in the COP matrix.

For the fl ow rates in the A branch (Q_max_PA1&2), it is 
shown that the fl ow rate of the PA fl ow has the greatest 
infl uence (red dotted). For the PB fl ow (Q_max_PB), the pic-
ture is somewhat different. Here both PB and AT must be 
optimized (green and blue dashed). An important param-
eter related to the fl ow forces is the peak offset dI_PA. In 

Simulation setup and execution

Potential analysis out of the system simulation
Since the optimization task has to be carried out under 
enormous time pressure, the focus must fi rst be set cor-
rectly. In total there are four different port fl ows, each of 
which can be infl uenced by a variation of different geomet-
ric parameters. In order to get a feeling for the importance 
of the individual port fl ows (fl ow forces and fl ow rates) on 
the Q-I curve, a potential analysis is started. Therefrom the 
potential of a possible change is to be estimated , in order 
to carry out a detailed optimization of the geometric pa-
rameters only for the relevant control edges. 
 The system simulation model of the directional control 
valve is used as the basis for the potential analysis (see Fig-
ure 3). The system simulation model generates a Q-I(t) char-
acteristic curve (time-dependent), whereby results from 
the CFD simulation are used as input. These CFD fi elds are 
scaled for the potential analysis.

Fig. 2: Q-I characteristic curve with optimization target (yellow arrows) and 

valve geometry for the PA(BT) and PB(AT) switching positions

Fig. 3: System simulation model (AMESim, above) and integration into a sensi-

tivity analysis in optiSLang (below)

Fig. 4: Q-I characteristic curve variation (top) and COP matrix (bottom) for po-

tential analysis

Fig. 1: Switching symbol and explanation of function including volumetric-

fl ow / fl ow-characteristic curve (Q-I)
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Based on this MOP, an optimization by means of an evolu-
tionary algorithm is started. It shows that the external goal 
to increase the fl ow rate can be realized without problems. 
On the basis of this knowledge, the fl ow rate is only defi ned 
as a constraint. The gradient of the characteristic curve 
and/or the peak offset are used as optimization targets. 
 The result of a multi-target optimization leads to a 
Pareto front (see Figure 9), which shows the best designs 
with regard to the target criteria. The re-evaluated designs, 
i.e. those recalculated in the system simulation, are shown 
in green. It becomes apparent that the Pareto front of the 
MOP optimization is smoother than that of the recalculat-
ed designs, but the differences are largely negligible.

On the basis of the Pareto front, a compromise needs to be 
found between the two criteria. Therefore, the Q-I-charac-
teristics are considered again. Using this as a basis, a set 
of parameters containing geometric parameters is derived. 
Therefrom a concrete design can be obtained. 
 However, it must be taken into account that the re-
evaluated designs were also generated with the help of 
CFD-MOP. This results in the necessity of a second re-evalu-
ation, i.e. a two-stage re-evaluation. 
 The process in Figure 6 is repeated with the parameters 
of the optimized design. Figure 10 (see next page) shows 
the fl ow rate and the fl ow force over the stroke for the MOP 
interpolated and recalculated variants. The shown conver-
gence of both curves is very satisfactory. The high COP qual-
ity of the CFD-MOP can also be seen here.
 Finally, the test result of the reference (green) and the 
target variant (purple) can be compared (see Figure 11). This 
shows that the gradient in the falling A-branch (optimization 
criterion) hardly varies, although the fl ow rate has increased 
signifi cantly. The fl ow rates were also signifi cantly increased.

Summary and outlook
When optimizing the 4/4-way valve, various partial ranges 
for Q-I characteristic curve optimization are possible. In 
order to analyze which of the ranges have the greatest in-
fl uence, a potential analysis is performed. This shows the 

shows the structure in optiSLang. The sensitivity system 
(left) generates a distribution of the geometric parameters, 
whereby the forces and fl ow rates are interpolated using 
the MOP (based on the CFD results). The data is then bun-
dled in a calculator, processed onwards and forwarded to 
the python script. At this point the fl ow fi elds for the sys-
tem simulation are created. Afterwards, a standard “AMES-
im in optiSLang” workfl ow is started. 
 Based on the results of the sensitivity analysis, a MOP 
is generated. Since the COPs are of high quality, the optimi-
zation may be started directly on the MOP (much faster). 
The re-evaluation system generated by optiSLang can sub-
sequently be utilized to run a separate system simulation 
for the best design. 
 Various optimizations are started, whereby these only 
differ according to their criteria. For example, the subcriteri-
on peak misalignment is constrained once barely and once 
very narrowly.

Results and re-evaluation
The coupled system delivers several results. First, the COP 
matrix of the sensitivity analysis is examined more precisely 
(see Figure 8). The geometric parameters are now displayed 
in dependency of the system results, which were evaluated 
on the Q-I characteristic curve. It is noticeable that the COPs 
are very large, meaning that the MOP is suitable for optimi-
zation. The relevant parameters (for the selected variation 
range) can also be read here (grey dashed).

must be executed robustly, i.e. for each geometry which can 
be simulated a proper negative volume (fl ow rate) must be 
provided, a grid must be produced with regard to local re-
fi nements and a fl ow calculation must be computed up to 
convergence (see Figure 6). 
 The parameter variation (stochastically distributed in-
put parameters, advanced Latin Hyper Cube and the sub-
sequent MOP generation) is controlled by optiSLang and 
guarantees an optimal ratio between simulation time and 
quality of the metamodel.

With the help of the COP matrix the suitability of the MOP 
for interpolation can be investigated. The results show that 
these are larger than 97% and can therefore be used for fur-
ther applications.

Optimization system
Since the MOPs of the CFD simulation are suffi ciently ac-
curate, the overall system can now be examined. Figure 7 

this case it can be seen that the fl ow forces PA and BT have 
an infl uence on it. These must always be taken into account 
in the subsequent optimization process.

Coupling between CFD and system simulation in optiSLang
The potential analysis shows which one of the fl ow fi elds has 
a large infl uence on the Q-I curve, but it does not show ex-
actly what the geometry looks like that leads to this change. 
 Figure 5 shows a schematic diagram of the procedure. In 
principle, it is possible to integrate a variable-stroke opening 
surface directly into the system simulation with the aid of 
functions. However, as soon as fl ow forces play a major role, 
the models and approximation possibilities are not accurate 
enough. For this reason, another solution must be found.
 This solution lies in the meta-modeling (MOP-solver, 
MOST, WILL) of the fl ow force in dependence of geometric 
parameters. For this purpose, a parametric CFD model (see 
chapter: MOP creation on the basis of CFD results) must 
be created in advance. Subsequently, a MOP is generated 
and integrated into optiSLang (MOP-solver). During the cal-
culation, the MOP is interpolated, whereby a single MOP 
is available for each stroke position. A characteristic curve 
(force or fl ow rate over distance) is then generated and 
combined into a fi eld using the analytical relationship from 
equation (1). This fi eld can later be generated for the sys-
tem simulation using the python script integrated in optiS-
Lang. Since the system simulation is now able to simulate 
the Q-I characteristic curve, an optimization can be started 
on this basis for characteristic values, e.g. fl ow rate at the A 
port or peak offset.

MOP creation on the basis of CFD results
The heart of the Q-I characteristic curve optimization is the 
CFD-MOP (HUGEL). Since this is to be interpolated, the COP 
must be as good (i.e. close to 100%) as possible, which leads 
to a larger number of design points. At the same time, the 
CFD simulation should be robust, suffi ciently precise and 
converged. Since all these requirements stand in confl ict 
with the temporally strongly limited task, the workfl ow 
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Fig. 5: Procedure for coupling between geometric quantities and system response

Fig. 6: Integration of ANSYS-Workbench (CFX) in optiSLang for MOP creation 

for the coupled system

Fig. 7: Coupled Optimization System with subsequent MOP-based Optimiza-

tion (3 x evolutionary algorithm with different criteria)

Fig. 9: Pareto front with validated design points

Fig. 8: COP matrix of the coupled system (sensitivity analysis)
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Fig. 10: Volume fl ow and fl ow force over the stroke for MOP interpolation and 

re-evaluated CFD simulation

Fig. 11: Measurement results (Q-I characteristic) of the fi rst prototypes (pur-

ple) compared to the reference (green)

large infl uence of the PA, PB and AT fl ows on the target 
parameters. By creating a MOP with optiSLang and CFX a 
correlation between fl ow forces, fl ow rates and geometric 
parameters can be identifi ed. If this MOP is integrated into 
a coupled system simulation controlled by optiSLang, a re-
lationship between transient behavior (Q-I characteristic) 
and geometric parameters can be calculated. This is used 
to calibrate the characteristic to the target functions. Using 
the workfl ow shown, a geometry that meets the optimiza-
tion goals can be found and produced. In addition it offers 
to the customer the possibility to react quickly to the adap-
tion of the target functions.
 The next steps are a robustness analysis using produc-
tion scatter and, if necessary, an adjustment of the tolerance 
width of the most important parameters with optiSLang.
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