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Editorial

A large amount of customer value in using variance based 
design evaluation with optiSLang is driven by correlation 
analysis helping to increase the understanding of designs. 
Dynardo’s MOP technology represents the leading edge 
methodology for correlation analysis between scalar input 
and output variables. In recent years, Dynardo has been de-
veloping intensively the application of random fi elds and 
fi eld meta-models to extend the capabilities of correlation 
analysis from scalar values to fi eld quantities, such as one 
dimensional fi elds in time or frequency as well as two or 
three dimensional fi elds at surfaces or in 3D space.

Nowadays, in the age of Industrial Internet of Things (IIoT), 
known as Industry 4.0 in Germany, we are looking forward 
to getting access to a lot of real time machine and design 
data, including spatial distribution of material or signal-
based properties. There will be a race for the best algo-
rithms to process “Big Data” and to use it for product life 
cycle management, design and optimization. For virtual 
prototyping, this means plenty of data in time and space 
will become accessible requiring extended methods of cor-
relation analysis for evaluations of the design performance. 

First industrial projects have shown that Dynardo’s applica-
tion of random fi elds and fi eld meta-models are very appro-
priate for the modeling of correlations in time and space. 
Field meta-models are especially useful whenever distrib-
uted or location-varying quantities have to be considered 
for correlation and sensitivity analysis, robustness evalua-
tion as well as design optimization. 

Another interesting industrial application of the technol-
ogy is the calibration of so called digital twins regarding 
signals in time and space for monitoring, diagnostics and 
prognostics of product designs or systems. Further applica-
tions are in tolerance analysis or shape optimization.

The title story of this journal will give a brief overview on 
the methodology and application areas of random fi elds 
and fi eld meta-models using the software Statistics on 
Structures (SoS).

Apart from that, we again have selected case studies and 
customer stories concerning CAE-based Robust Design Op-
timization (RDO) applied in different industries. 

I hope you will enjoy reading our magazine.

Yours sincerely

Johannes Will
Managing Director DYNARDO GmbH

Weimar, Juni 2016
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The extended capabilities of Statistic on Structures can process and analyse spatially or temporally distributed 
product parameters for a realistic simulation and evaluation of the design performance.

RANDOM FIELDS AND FIELD META MODELS – 
CORRELATION ANALYSIS IN TIME AND SPACE

TITLE STORY // RANDOM FIELDS 

Introduction
Progress in measurement technology makes it possible to 
capture accurate data of real component geometries. This 
also includes the recording of spatial distribution of mate-
rial or signal-based properties, such as dynamic processes 
in time, frequency fi elds or load-displacement curves. Com-
puting-based manufacturing technologies (Industry 4.0) 
provide such spatially or temporally distributed product pa-
rameters in large quantities. To use this data (Big Data) for a 
realistic simulation and evaluation of design performance, 
extended methods of correlation analysis are required. 

Random fi elds and fi eld meta models, which Dynardo has 
been developing intensively in recent years, are suitable for 
the modeling of correlations in time and space. Using ran-
dom fi elds, parametric models for arbitrary geometries and 
signals will automatically be generated and can be directly 
used for the process of optimization, model calibration or 
robustness evaluation. For example, the generation of ran-
dom imperfections will be possible with the help of random 
fi elds. Field meta models can be used, for instance, to ap-
proximate the result of an FEM solution including spatial 
and temporal distribution. Thus, the accuracy of the meta 

modeling and the sensitivity analysis of distributed values 
will be increased while simplifying the effort of processing 
such parameters. 

This article gives a very brief overview on the methodology 
and application areas of random fi elds and fi eld meta models.

Methodology
Typically, the variation of a parameter can be described by a 
representative value (e.g. statistical mean), the magnitude 
of variation (e.g. statistical variance) and even more de-
tailed by its statistical distribution type. This can be applied 
directly to distributed quantities, where one can describe 
the variation by the statistical parameters - for each point 
- in time or space. Further and most importantly, the cor-
relation among all individual points in time/space need to 
be specifi ed. In practice, however, one can hardly specify the 
whole covariance matrix of a spatial or temporal fi eld. How-
ever, it is possible to approximate the covariance matrix 
through a truncated series expansion as shown in Figure 1. 
This series represents the correlation structure of a fi eld in 
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sparse memory layout. It is defi ned by “scatter shapes” and 
associated “amplitudes”. The scatter shapes are typically 
determined by analysis of a test set. The amplitudes are a 
sub space representing the total fi eld variation in terms of a 
few scalar parameters. 

The methodology ensures that a minimum number of pa-
rameters yields a certain accuracy in describing spatial or 
temporal variation patterns. Hence, it can be used to identify 
an optimal parameterization of a variation in space or time 
based on analysis of measured or virtually created data. 

An extension of the random fi eld parameterization is fi eld 
meta modeling. Therein, one does not represent the fi eld 
variations in terms of a new parameter space, but in terms 
of the original input parameters. The fi eld meta models are 
nonlinear functions that are chosen to approximate the av-
erage fi eld response in an optimal way through variations 
of the input parameters as illustrated in Figure 2. Therefore, 
these surrogates are called fi eld meta model of optimal 
prognosis (F-MOP). They also allow to compute sensitivity 
indices based on prognosis quality (fi eld coeffi cient of prog-
nosis – F-CoP).

Correlation analysis of signals
Signals are data being distributed in a one-dimensional 
space. Signals are, for example, dynamic processes (time, 
frequency), load-displacement curves, transient external 
loading and boundary conditions, etc. 

Case 1: Parameterization of a dynamic process
This example represents a simple dynamic process defi ned 
by a damped harmonic excitation in time. Although the me-
chanical model is very simple, the task of fi nding a good pa-
rameterization is a challenge: The response changes its mag-
nitude, its damping ratio and its frequency as illustrated in 

Figure 3. Based on the analysis of a design of experiments, a 
random fi eld model is established. Only 7 parameters can be 
used to explain nearly 80% of the whole variance observed in 
the DoE, while already 11 parameters represent more than 
90% of the variance. The scatter shapes are wavelets as seen 
in Figure 4. This result can be confi rmed to be an optimal pa-
rameterization by analytical solutions.

Case 2: Modeling ad-hoc variations of signals
Sometimes, one wants to study the performance of a nu-
merical model given some variations of input signals. If mea-
surements are available, the random fi eld parameterization 
can be used to create an accurate statistical model for the 

Fig 1: Representation of a random fi eld (e.g. a geometric perturbation from a CAD model) based on mean value and a linear combination of deterministic scatter 

shapes and associated random scaling factors (random fi eld amplitudes) z_i. 

Fig 2: Approximation of FEM solutions by fi eld meta models replacing the 

original CAE solver

Fig. 3: Observed variations of a dynamic process in a design of experiments

Fig 4: Identifi ed scatter shapes describing variations of a dynamic process
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observed signal variations. Typically, however, no or only a 
few measurements are existing during the design process. 

In this case, signal variations were modeled by a “synthetic 
random fi eld”. Therein, the correlation is assumed using 
some autocorrelation model between the individual points 
in time. The distribution of mean and standard deviation 
can be either estimated from a few measurements or as-
sumed as well. The results are typically sinus-like functions 
in 1D similar to the Fourier series, as being illustrated in 
Figure 5. Therein, a synthetic random fi eld model is created 
with zero mean and constant unit standard deviation.

Case 3: Sensitivity analysis of a signal
The fi eld meta models can be used to perform an extended 
sensitivity analysis based on signal data. They allow to iden-
tify which input parameter is responsible for the response 
variation for each individual point in time. It is recommend-
ed to perform a sensitivity analysis based on fi eld meta 
models (in favor of the scalar MOP) if

 • The location of hot spots is not yet known
 • The location of hot spots is varying
 • Hot spots do not exist since one is interested in a distributed 

effect (for example the shape of the signal in an interval)
 • The accuracy of a scalar MOP is too small, but the reason 

is unknown.

The result of a F-MOP is the visualization of the Field-CoP 
describing the distribution of the CoP along the time axis. 
By that one can identify at which locations of the signal the 
meta model is able to predict the variations well (or not), 
and at which locations of the signal input parameters are of 
large or small infl uence onto the signal variation.

The following example is presented by Römelsberger et 
al [1]. Therein an optimization on a meta model was at-
tempted in order to optimize the design of a dual band WiFi 

antenna. The response of interest were the minima of the 
“return loss” in frequency domain. A scalar MOP obtained 
an accuracy of CoP=71% only. Using a fi eld meta model for 
the return loss spectrum, however, one can identify the in-
tervals in frequency domain, which are responsible for the 
low accuracy of the meta model. The signal responses of a 
design of experiments are illustrated in Figure 6. The cor-
responding F-CoP values are shown in Figure 7. The upper 
curve is the F-CoP of the whole model defi ning the model 
accuracy for the respective frequency value. For the right 
minimum the accuracy is suffi ciently large, but the meta 
model cannot well predict the variations in the center and 
for the left minimum. The center is, however, not relevant 
for the optimization. The left minimum is, however, the rea-
son why the scalar MOP cannot approximate the minimum 
value well: The position of the minimum is varying and, 
further, it is a true singularity being dominated by round-
off errors in the CAE process. The other curves in Figure 7 
denote the sensitivity of the individual input parameters 
which is varying in the frequency domain. 

The advantage of a Field-MOP is that it captures automati-
cally all support points of a signal. Alternatively, one needs 
to manually defi ne few hot spots for which a MOP is evalu-
ated, but still misses the shape of the signal in the interval 
between the selected locations.

Case 4: Pre-Optimization on a signal meta model
A sensitivity analysis is an important part of the design pro-
cess, typically being implemented before the actual optimiza-

Title Story // Random fi elds

Fig 5: Scatter shapes of a synthetic random fi eld model for mean=0 and std-
dev=1 at all points

Fig. 6: Response signals of the “return loss” in frequency domain of a design 
of experiments

Fig. 7: F-CoP of the “return loss” in frequency domain
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tion takes place. If the meta model is accurate enough, it can 
be used to “pre-optimize” the design without extra CAE solver 
run. The identifi ed optimum of the meta model can later be 
used as a start point of the direct optimization. 

Field meta models are recommended if the shape of the signal 
is of interest. This is the case in many applications of model 
calibration, e.g. the identifi cation of material parameters 
based on measured load-displacement curves. The basic idea 
is that one approximates the whole load-displacement curve 
by a fi eld meta model and then minimizes the error norm be-
tween the approximated signal and the reference curve. 

As an example, assume that the dynamic process of ex-
ample 1 is the result of a numerical oscillator model as 
illustrated in Figure 8. The task is to identify the material 
parameters of a given measured reference signal as shown 
in Figure 9. In terms of scalar parameters one would need to 
identify the locations of the local minima and maxima and 
then minimize the position error with respect to the same 
extrema in the reference signal. The identifi cation of these 
hot spots, however, needs manual programming and, thus, 
is prone to errors. Using a fi eld meta model for the whole 
signal, one only needs to minimize the error norm between 
both signals. The result is shown in Figure 10 being very 
close to the true optimum. 

Correlation analysis in space
The methodology and work fl ows for modeling of signal 
variations can also be applied to spatial variations in 3D. 
Typical quantities are geometric variations (e.g. random 
imperfections due to manufacturing) like boundary coordi-
nates or shell thickness, state variables (e.g. stresses, dis-
placements) used to evaluate structural performance, dam-
age (e.g. distribution of plastic strains), material properties 
(e.g. surface friction properties, fi ber angles) etc. 

Case 1: Parameterization of geometric imperfections based 
on measurements
Nowadays, detailed laser scans of manufactured products 
are often done in order to ensure the dimensional accuracy 
at critical locations. The same information can be reused, 
for example, to create a realistic statistical model of the 
geometric imperfections in order to virtually create random 
geometries, e.g. for a robustness analysis. 

The following example is presented by Nunes et al [2]. There-
in, the robustness of an automotive brake system regarding 
brake squeal noise was analyzed. The squeal noise frequen-
cies predicted by the numerical model did not match the ob-
served frequencies in the hardware experiments. Engineers 
suspected the geometric imperfections of the brake pad sur-
faces. To model these variations, laser scans of brake pad sur-

Title Story // Random fi elds

Fig 8: SDOF oscillator

Fig 10: Solution of a pre-optimization of a model calibration

Fig 9: Response of a SDOF oscillator model (blue) and reference signal (red)
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faces were done. The results were mapped onto a FEM mesh. 
Finally, a random fi eld model was created which was capable 
of changing the FEM nodes on the surface according to the 
identifi ed distribution parameters. The schematic workfl ow 
is illustrated in Figure 11. The results are illustrated in Figure 
12. Therein one compares the numerically predicted noise 
frequencies obtained from a DoE with random scalar param-
eters (red) with predicted noise frequencies obtained from 
a DoE with additionally consideration of geometric variation 
patterns (blue). Obviously, the results obtained from varying 
the surfaces are much closer to the hardware observations. 

Case 2: Modeling ad-hoc variations of geometric variations 
In this example from automotive, the infl uence of geomet-
ric imperfections of a knuckle onto the brake squeal noise 
frequency was analyzed, see Nunes et al [3]. Only a single 
measurement of the true geometry was available. It was 
used to estimate the principal magnitude of variation of 
the true geometry from the CAD model. A synthetic ran-
dom fi eld model was employed to virtually create random 
knuckle geometries. A schematic workfl ow is illustrated in 
Figure 13. First a random fi eld is created after determining 

the geometric deviation between a FEM mesh (based on a 
CAD geometry) and a measurement (STL), Figure 13 top left. 
Then the model is used to generate new random designs 
(Figure 13 top right). In the concluding sensitivity analysis, 
one identifi ed that a material parameter, but not the geo-
metric imperfections of the knuckle, was of signifi cant in-
fl uence onto the squeal noise, see [3] for more details. 

Case 3: Sensitivity analysis of 3D fi eld variations
This is an example how the fi eld meta models can be applied 
to sensitivity analysis of 3D distributed data. The example 
was presented by Konrad et al [4] wherein a metal forming 
production process was simulated. After deep drawing of a 
metal sheet, the resulting sheets are typically joined ( joining 
and spring back simulation). In the considered case, the join-
ing process is defi ned by the position and size of 6 clamps 
linking two metal sheet, see Figure 14. The main target of 
the analysis is a calibration of the joining parameters with 
the objective of minimizing the geometric deviation of the fi -
nal geometry after joining with a CAD geometry created by a 
designer. Since the fi nal deviation error is a different value at 
each spatial location, one performs a sensitivity analysis to 
identify the joining parameters that infl uence each respec-
tive position at most. The result of such a sensitivity analysis 
are illustrated in Figures 15 and 16: First one checks the ac-
curacy (F-CoP) of the meta model and relates it to the mag-
nitude of variation (e.g. standard deviation) of the geometric 
deviation. Locations with very small standard deviation are 
typically not well explained by a fi eld meta model, while 
location with large variation should have a large CoP. Here 
the F-CoP are well distributed with an average value of 94%. 
After that one can identify the individual sensitivities of the 
input parameters (Figure 16). 

Fig. 11: Consideration workfl ow of measured geometries in a numerical robustness analysis

Fig. 12: Results of a robustness evaluation comparing a DoE without (red) 
and with (blue) varied geometry
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Fig. 13: Workfl ow of a synthetic random fi eld model for the geometric imperfections of a knuckle

Fig. 14: A joining process after a deep drawing step using 6 clamps

Fig. 15: Field meta model of a geometric deviation. Left: Standard deviation of the geometric deviation in 
vertical direction for each location on the FEM mesh (blue: small; red: large). Right: Explainable variation 
(F-CoP) by the fi eld meta model

Fig. 16: Field meta model of a geometric deviation in vertical direction. Left: Distribution of the infl uence 
(F-CoP) of the position of the left-bottom clamp. Right: Distribution of the infl uence (F-CoP) of the posi-
tion of the center-top clamp (yellow: large infl uence, blue: small infl uence)

Case 4: Pre-optimization on a 3D fi eld 
meta model
Using fi eld meta models in space, one 
can pre-optimize a design utilizing 
distributed quantities. This example 
was presented by Kellermeyer [5]. 
Therein, the draping process of a com-
posite, as illustrated in Figure 17, is 
simulated. After draping the compos-
ite material onto the desired shape, a 
spatially varying distribution of fi ber 
angles can be observed. Additionally, 
the task was to calibrate the process 
parameters of a draping simulation 
with ANSYS™ such that it matches 
the observed fi ber angle distribution 
(see Figure 18). This was solved using 
a fi eld meta model in SoS. First a sen-
sitivity analysis of the draping simu-
lation model was employed analyzing 
the fi eld of fi ber angles. Second, the 
spatial distribution of the fi ber angles 
was measured and associated with 
the FEM nodes in the numerical mod-
el. The optimization objective was to 
minimize the average squared error 
between the fi ber angle predicted by 
the numerical model and the mea-
sured fi ber angle. As a result, the av-
erage deviation of the fi ber direction 
between numerical model and mea-
surement was reduced from initially 
7.3° to 5.2°. The fi eld meta model 

Random Field 
Identification

CAE ProcessCAE P
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was verifi ed by a reference solution of the original numeri-
cal model, obtaining an average error of 5% between fi eld 
meta model and CAE process.

Summary
This article presented some applications of random fi elds 
and fi eld meta models in time and space. The main proper-
ties and applications of such models are

 • Field statistics can be used to identify hot spots (locations 
of large variation, of large failure probability, etc.).

 • Random fi elds automatically fi nd a parameterization for 
parameter-free variations in time or space.

 • Field meta models can be used to perform a sensitivity anal-
ysis of distributed data, i.e. if the hot spot is not yet known, 
if the hot spot is varying its location, if the quantity is of dis-
tributed nature, if the scalar MOP has a low CoP or if the user 
wants to increase understanding of the numerical model

 • Random fi elds can be used to generate random designs. 
Empirical random fi elds are based on the evaluation of 
measurements (or virtual experiments) and can repre-
sent the fi eld statistics very accurate (distribution type, 
statistical moments, anisotropy, inhomogeneity). If no 
measurements are available, one can create a synthetic 
random fi eld model based on assumptions of the mean 
standard deviation and correlation in time or space. If a 
few measurements are available, one can estimate mean 
and standard deviation and assume only the correlation. 

 • Field meta models can further approximate the whole 
fi eld response of a CAE/FEM model. This is particularly 
useful in pre-optimization whenever distributed or loca-
tion-varying quantities are considered, e.g. in model cali-
bration.

 • Further applications are robustness and tolerance analy-
sis or shape optimization. 

Authors // Sebastian Wolff (DYNARDO Austria GmbH)
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In order to ensure the manufacturability of assemblies to the Body-in-White structure in car series production, 
optiSLang supports engineers at Daimler AG in the planning and developing of adequate tolerance concepts.

SENSITIVITY ANALYSIS OF SEVERAL BODY-IN-
WHITE PARAMETERS USING TOLERANCE ANALYSIS

CUSTOMER STORY // AUTOMOTIVE INDUSTRY 

Introduction
Today’s mass production environment requires assemblies 
to be built up with a specifi c dimensional accuracy, ensur-
ing the fulfi llment of functional requirements and their 
processability to a higher-level of assembly. The manufac-
turing of single parts always produces some deviations. The 
assembling process itself also causes inconsistency, for ex-
ample, due to inaccuracies in the positioning of the parts at 
the manufacturing plant or in the joining process as well as 
due to elastic deformation.

Tolerance analysis generally provides ranges, in which single 
parts are allowed to deviate, thus, the functionality of the as-
sembly is still guaranteed. It needs certain information to build 
up such a tolerance analysis model properly. A distinction can 
be drawn here between product data, such as part geometry 
and tolerance information, as well as process data, for instance 
the assembly graph, jig and fi xture concept, joining locations 
or measurement points. This information is necessary to defi ne 
contact conditions, ranges and measurements with the help of 
tolerance simulation software. In the automotive industry, the 
build-up process of these tolerance simulation models is time 
consuming and, due to human interaction, fault-prone.
Today, more than one hundred assemblies are attached to 

a sophisticated Body-in-White (BiW) structure, which itself 
already consists of several hundred parts. In order to ensure 
a manufacturability of the assemblies to the BiW structure 
in series production, experienced engineers are required for 
planning and developing adequate tolerance concepts. Re-
garding the multidimensional orientation of the tolerance 
chains in a BiW structure, it is a challenge to fi nd an optimal 
concept for attaching certain parts. Beside long-term expe-
rience, the usage of IT-tools is indispensable for helping the 
engineer in making the right decision. This article will ex-
plain an approach how to interlink optimization software, 
product and production development data as well as CAT-
simulation tools in order to conduct a sensitivity analysis 
on simulation input parameters. Furthermore, it will be 
shown how this approach can be integrated in the process 
of the automotive BiW sector. The concept was fi rstly im-
plemented by using the software optiSLang for the sensitiv-
ity analysis and 3DCS for the tolerance analysis.

State of the art
Fig. 1 shows how the different kinds of information are used 
to build up a tolerance analysis model. First of all, a CAD-ge-
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ometry is needed to display the deviations of and between the 
parts (refer to 1 in Fig. 1). Furthermore, different kinds of in-
formation are used to map the manufacturing process in the 
simulation model (refer to 2 in Fig.1). The assembly graph sets 
up the model tree in the simulation environment. It addition-
ally provides the logical order of part assembling and, thereof, 
the engineer can derive the number of assembly operations. 
In order to assign points to the assembly operations, joining 
elements, jig layouts, fi xture layout and datum target points 
are used. The tolerance information of the single parts, which 
is created during the product development process, is directly 
transferred to the simulation model (refer to 3 in Fig.1). Also, 
additional tolerances caused by the manufacturing process, 
such as inaccuracies in the positioning process of the parts, 
will be considered in the simulation model. Measurement 
points are furthermore used to defi ne the quality features in 
the tolerance simulation environment as a closing dimension 
of the tolerance chain (refer to 4 in Fig.1). The last step is to 
defi ne several simulation parameters (refer to 5 in Fig.1). Af-
terwards, the simulation model is ready for application.

Several quality features have to be fulfi lled in the BiW manu-
facturing process to ensure a robust manufacturing of the 
assembly. They can be divided into dimensional technical 
specifi cations and quality features at the outer skin of a ve-
hicle. Examples of the fi rst type are all technical connections 
to the BiW, for example the whole pattern for connecting the 
chassis. If these specifi cations do not violate the required tol-
erance ranges, a correct assembling process of the additional 
mounted parts to the BiW will be guaranteed. Examples for 
the second type of quality features are the gap and fl ushness 
measurements. Fulfi lling these requirements ensures an aes-
thetical high quality product, as well as a faultless function 
of the external parts, e.g., recesses for a correct door opening. 
The number of both types of quality features sum up to sev-
eral hundred measurements. Fig.2 shows sample drawings 
of the two different categories.

In order to reach a high level of automation during the 
build-up process of tolerance simulation and the import of 
the required information to the CAT environment, a neutral 
exchange format like XML is needed. In this project, 3DCS 

software was chosen to fulfi ll this precondition. The tool also 
provides basic functionality for an optimization. There are 
two optimization possibilities available for the procedure. 
On the one hand, a tolerance cost optimization is possible 

Fig. 1: Dependencies of product and process information with regard to the CAT simulation model

Fig. 2: Different kinds of quality features in the automotive industry
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to achieve best quality at a minimum of costs. The user can 
allocate the largest possible tolerance while still meeting di-
mensional objectives. On the other hand, a tolerance quality 
optimization could be performed where the quality would be 
optimized for a given fi xed budget.

Hence the development of adequate tolerance concepts for 
BiW can furthermore be supported by the usage of optimi-
zation tools. The software platforms LS-OPT, optiSLang and 
AutoForm-Sigma were compared with regard to the optimi-
zation task. Thereby, the degree of openness of the program 
code was a major focus. Regarding the import of several in-
put parameters, the software LS-OPT offers an easy imple-
mentation of LS-DYNA projects and can also be extended to 
the inclusion of other simple ASCII fi les. The software solu-
tions ModeFrontier and optiSLang, on the contrary, offer 
some script nodes which enable a customized integration 
of the optimization tool towards other disciplines based on 
their specifi c Application-Programming-Interface (API). Here, 
the software optiSLang was chosen for application. 

For the interlinkage of the product and process development 
information (input data), as well as the tolerance simula-
tion model to the optimization tool, a standardized ex-
change format is required. Since the main exchange format 
is based on an XML database, the optimization tool has to 
provide absolute readability of this format to secure a con-

sistent exchange between all the disciplines. Thus, handing 
over the input parameters of the sensitivity analysis and the 
target features of the optimization task makes it necessary 
to create an input deck in the used software optiSLang. Be-
ing a part of a more complex script, this deck is able to read 
the provided tolerance simulation XML, build an optiSLang 
project for the execution of a sensitivity analysis and, fi nally, 
perform an optimization using the results obtained from the 
sensitivity analysis. This script will be described in detail later 
in this article.

What the approaches in literature have in common are to fo-
cus only on a single input parameter used for optimization 
.Consequently, a main research question is to fi nd a possi-
bility for the optimization of several input parameters. There 
is also a need for a basic database capable of processing all 
these input parameters. Thus, the main focus of this project 
is a principal concept of linking the database towards an op-
timization tool. An application example will be given here to 
clarify these functionalities.

Proposed Approach

General Approach
Fig. 3 shows the general approach of linking product and 
process data with the optimization software. A basic dis-
tinction between the parameters of an optimization prob-

Fig. 3: General approach for a sensitivity analysis of product and process information using tolerance simulations
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lem is whether they are continuous or discrete. Continuous 
design parameters can take nominal values in a certain 
range ( ) and may carry deviations from this nomi-
nal value ( ). Discrete design param-
eters, on the other hand, can only adopt specifi c values taken 
from a closed, fi nite set. The multi-objective optimization 
problem can be mathematically formulated as follows:

   (1a)

over:    (1b)

subjected to: 

The defi nition of continuous design variables can be found 
in formula 1.c:

  (1c)

Parameters carrying certain deviations are defi ned as follows:

 (1d)

where  are the design parameters carrying upper and 
lower bounds ( ) and  characterizes the dimen-
sion of the design space.  represents the  inequality 
constrain function. To fi nd the Pareto optimal solutions of 
the equation means searching for a feasible point  
ensuring there is no other feasible point  so that 

 with strict inequality in at least one 
condition, . Single objective optimization 
problems ( =1) have to satisfy the Karush-Kuhn-Tucker 
condition for the solution  of the Pareto optimum.

When considering a Robust Design Optimization (RDO), the 
goal is to obtain a solution which is robust against uncer-
tainties on the design variables. The multi-objective optimi-
zation extends to stochastic variables ( ) and is formulated 
as follows:

   (1e)

   (1f)

 (1g)

 

(1h)

subjected to:

 (1i) 
 
where  is the stochastic variable,  represents the Set of 
sampling points  represents the ath inequality constrain 
function. 

The stochastic variables can be expressed with

    (1j)

where  characterizes the mean value and  the cova-
riance matrix of normal distributed uncertainties ( ).

In the particular case of the BiW during an automobile body 
manufacturing process, the input parameters for a tolerance 
simulation and further optimization can be classifi ed as shown 
in Fig. 3. The variation of the CAD-geometry, e.g. fl ange angle 
and dimension (see 1 in Fig.3), is represented by a continuous 
design variable without deviation equal to formula 1c, e.g. 

. The assembly graph (see 2 in 
Fig.3) represents a discrete design variable having a fi nite num-
ber of characteristics . 
Additionally, the design variables (see 3,4,5 in Fig. 3) jig and fi x-
ture concept, joining elements as well as datum target points 
are continuous and, in this case, without uncertain deviation 
( ). For the tolerances (see 6 in Fig. 3), on the 
other hand, a deviation has to be considered ( ) equal to 
formula 1d.

Additional uncertainties, such as inaccuracies in the manu-
facturing process, can be considered by including stochastic 
variables ( ) in the system. Stochastic deviations in the jig 
and fi xture, e.g. positioning inaccuracies of the parts, are 
represented by . Deviations of the joining process, 
for instance deviations of the weld gun accuracy due to the 
clearance in the welding robot guidance, are characterized 
by . Uncertainties of the alignment, e.g. wear of the 
manufacturing station, are represented by . Dif-
ferent distribution types have to be considered regarding 
each specifi c stochastic variable, for example, the infl uence 
of wear follows a trapezoidal distribution.

Nowadays, solving an optimization task entails the perfor-
mance of an initial sampling on the design variables in their 
set range. The fi rst step is the creation of a predefi ned number 
of sample designs ( ). The sampling method can basically be 
divided in two different approaches: deterministic Design of 
Experiments (DoE) and stochastic sampling. In cases where a 
high number of input variables are involved causing an unjus-
tifi able amount of processing times, an Advanced Latin Hyper-
cube Sampling (ALHS) should be employed. Moreover, there is 
also a single-switch-method available to reduce correlation er-
rors. After the calculation of the selected samples, the results 
are used as nodes to calculate a response surface covering the 
entire design space. The program optiSLang offers a response 
surface approach named Metamodel of Optimal Prognosis 
(MOP), which automatically searches for the best response 
surface technique according to the selected validation meth-
od. Other available techniques are Polynomial Least Squares 
Regression (PLSR), Moving Least Squares (MLS) and ordinary 
Kriging. The resulting response surface is then used in the op-
timization problem.
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The variation of the values of some design variables may 
have an effect on other design variables of the tolerance 
simulation model. In this case, variables such as CAD data, 
the assembly graph or the jig and fi xture concept (see 1,2,3 
in Fig. 3), have a signifi cant infl uence on the values of other 
variables. For example, a change in the assembling order of 
different parts or the redesign of joining elements, datum 
target points and tolerances would lead to different layout 
concepts. The repercussions of a changed assembly graph 
would also infl uence, among others, the crash and welding 
gun simulations. On the other hand, other design variables 
do not have such great consequences on other variables (see 
4,5,6 in Fig.3). For instance, modifying datum target points or 
tolerances would only have an effect on the upper and lower 
measuring point specifi cation limits (USL and LSL). In order to 
maintain the calculation effort at a manageable state, these 
design variables having a low impact on other variables were 
fi rstly classifi ed as modifi able. The usage of a common data-
base was proposed in order to hand over the information to 
the optimization tool and to the tolerance simulation tool. 
The implementation of this general approach will be clarifi ed 
in more detailed in the following chapter.

Process integration 
First of all, the product and process information to build up a 
tolerance simulation model is exported from the PDM/CAD 
system to an external tool (see 1 in Fig.4), which represents 
the database and ensures further processing of the data.

The regarded CAD system, Siemens NX, provides an API 
called NX Open. Using this API enables an access to spe-
cifi c information stored in the CAD model. Thereby, the API 
provides a standardized communication code where the 
user can select the preferred programming language. Fig. 
5 shows an example of the data access using NX Open and 
the GUI for a derived database.

In the next step, the information of the database is used 
to create a tolerance simulation model. For this reason, 
the data is reduced and appropriately structured with the 
help of a specially developed algorithm (see 2 in Fig.4). As 
a result, the restructured information can be exported to 
the tolerance simulation model. In this application, an XML 
based DCSX format was used for export (see 3 in Fig.4). This 
format can be imported directly in the tolerance simulation 
environment to run a tolerance analysis.
In this project, the reduced XML format is used for a sensi-
tivity analysis being performed based on the input param-
eters of the tolerance simulation. The external tool shown 
in Fig.6 hands over the XML information to the variation 
analysis section (see 4 in Fig.4). In this example, a variation of 
the datum target system of the parts is conducted. Thereby, 
the objective is to Figure out which is the alignment concept 
leading to a minimum deviation in a gap and fl ushness mea-
surement. To register the datum target points as an input 
parameter, the reduced XML is parsed. The different datum 
target points of the parts are listed and the user is then able 

Fig.4: Implementation of the general approach in the automotive Body-in-White environment
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to select the parameters which are al-
lowed to be modifi ed in the sensitiv-
ity analysis (see Fig.6). Furthermore, 
the reduced XML format is used to 
perform a fi rst tolerance analysis on 
the “start design” of the variation 
analysis project. The tolerance analy-
sis software 3DCS is therefore batch 
called (see 5 in Fig.4). Afterwards, the 
resulting fi le of this analysis, carry-
ing the required gap and fl ushness 
measurements, is imported by the 
external tool. This enables the user to 
select the response parameters, e.g. 
standard deviation, for the sensitivity 
analysis. Additionally, the tool offers 
the possibility to edit several param-
eters of the sensitivity analysis proj-
ect, e.g. sampling method, number of 
samples, etc..

Once the user has defi ned the set-
tings for the sensitivity analysis 
through the GUI, the script can be 
run to solve the optimization task. 
By starting the analysis, the user 
calls for the execution of a *.cmd 
batch-script which is responsible for 
the control and coordination of all 
other sub-scripts and routines (see 1 
in Fig.7).

Taking that into consideration, sev-
eral folders are fi rstly created in the 
selected working directory. To en-
able a smooth interlinkage of the 
predefi ned user-input parameters 
towards the optimization tool, the 
specifi c information, for example, 
datum target point coordinates and 
direction, is stored in a text fi le. With 
the help of a simple macro, a text 
fi le containing the simulation re-
sults is also created. The last step of 
the *.cmd is an optiSLang batch-call 
which then reads a python script for 
the creation of the sensitivity analy-
sis project (see 2 in Fig.7 on previous 
page).

Summarizing the tasks performed 
by the Python script, the parameters 
for the DoE are selected fi rst, like 
sampling method, samples, range 
for the upper and lower bounds for 
the allowed deviation of the select-

Fig. 5: Product and production data access using NX-Open and storage of the data using an external tool

Fig.6: Required user settings to perform a sensitivity analysis

Fig.7 *.cmd call, the Python script creates optiSLang project, the tolerance simulation in batch call
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tions). Future research might prove the feasibility of the 
methodical approach using a demonstrator which carries 
different kinds of input data.
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Prof. Michael Vielhaber (Saarland University)

Source // www.dynardo.de/en/library

ed datum target points, etc.. Then, the parametric system 
is created, which includes the input node (input.txt), the 
solver node (solver.bat) and the output node (output.txt). 
Afterwards, these nodes are completed: the input node is 
fi lled with the information of the input text fi le created in 
the fi rst step (see 1 in Fig.7 on previous page), the output 
node is handed the information of an example result text 
fi le and the solver node is assigned the commands in an 
external prepared batch fi le. Finally, the Post-Processor and 
MOP nodes are created and all the necessary connections 
are completed. The fi rst step in the solver script (see 3 in 
Fig.7 on previous page) enables the usage of the input.txt 
fi le in the tolerance simulation environment. This fi le will 
later carry the modifi ed coordinates for the datum target 
points for the DoE. Therefore, the information is included 
in the *.dcsx fi le. Thus, it is possible to perform a tolerance 
analysis with a slightly modifi ed datum target system. For 
this matter, the tolerance analysis is batch-called. The re-
sulting fi le of the specifi c design is stored afterwards in the 
specifi c design folder and subsequently translated to a text 
fi le to ensure usability in the output node of the optimiza-
tion tool. Solving all the required designs makes it possible 
to create an MOP and study the sensitivity results.

Conclusion and Outlook
The considered approach to perform sensitivity analyses in 
several BiW single parts and assembly parameters with the 
help of tolerance analysis opens several opportunities. It is, 
for example, possible to perform an HLM-analysis to Figure 
out the main affecting contributors in a tolerance chain. 
Therefore, the tolerance range has to be set as an input 
parameter. The existing tools on the market already offer 
this functionality. The essential part and the unique feature 
of this approach is an easy way of considering more than 
one input variable in a tolerance sensitivity analysis, for ex-
ample, tolerances, joining information, jig and fi xture con-
cept, etc.. A common database achieves this by processing 
the required information in a system independent format 
(XML). With this customized tool, engineers can run toler-
ance analysis and optimization on a selected system (da-
tabase) without deeper knowledge of the multidisciplinary 
system or the involved software. Once the user has defi ned 
the relevant input parameters for a sensitivity analysis and 
its maximum allowed deviation, the simulation model is 
simply handed over to the optimization software using the 
XML related format. In that respect, the set-up of the re-
quired sensitivity analysis is performed in batch mode using 
specifi cally developed scripts. The results of the sensitivity 
analysis are then transferred back into the customized tool. 
Thus, a study of options can be conducted in a very short 
amount of time. Different alignment concepts of parts are 
considered to fi nd the most robust solution regarding the 
quality features on a given set of parameters. The deviation 
of the quality features will be minimized in BiW (gap and 
fl ushness measurements, dimensional technical specifi ca-
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Wind turbines are highly complex devices. They are very sensitive to poor design and faulty operation. optiSLang 
helps to mitigate such potential problems and to develop effective optimization strategies.

MODEL-BASED ANALYSIS AND OPTIMIZATION OF 
VERTICAL AXIS WIND TURBINES

CASE STUDY // TURBO MACHINERY 

Introduction 
In Germany the energy transition is already well underway 
and it is only a question of time before this scenario is ad-
opted by other nations. The energy transition is revolution-
izing the production of electricity in favour of renewable 
energy sources. In the future, solar and wind energy are 
likely to become the most important sources of energy. In 
this context, it is hardly surprising that small, decentralized 
wind turbines are becoming increasingly important.

Wind turbines are highly complex devices. They are very 
sensitive to poor design and faulty operation. To mitigate 
such potential problems requires an effective optimization 
strategy. 

Large wind turbines invariably consist of a single design 
type: they operate with a horizontal axis. In contrast, small-
er wind turbines may use one of two very different design 
concepts: those that operate with a horizontal axis, and 
those that use a vertical axis. The latter have a number of 
advantages compared to the horizontal axis variant: they 
are generally simpler in design, cost less, and manifest 
greater effi ciencies at low wind speeds. 

The last point indicates why this design is preferred for 
small wind turbines, as they operate closer to the ground 
where wind velocity is predominantly lower.

Figure 1 shows the different types of construction. The left-
hand frame shows a large, horizontal axis wind turbine. 
The right-hand frame shows a typical small vertical axis 
wind turbine. Vertical axis turbines require thoughtful in-

Fig. 1: Left - horizontal axis wind turbine; right - vertical axis wind turbine 
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stallation as the blade profi les are subject to airfl ow from 
different directions during rotation. The following sections 
describe a workfl ow developed by the Computer Simulation 
in Mechanical Engineering Research Centre which makes it 
possible not only to defi ne the complete geometry of such 
turbines for given wind velocities and determine power 
output at optimal effi ciency, but also to characterize the 
operational behaviour of an existing wind turbine at differ-
ent wind velocities.

The workfl ow
The development of the workfl ow was based on decades of 
experience working on the optimization of turbomachines. 
Figure 2 shows a comparative compilation of the major 
projects undertaken by the research group. As can be seen 
in Fig. 2, the optimization of wind turbines is a category of 
project that calls for a relatively high degree of numerical 
complexity, with only the geometric optimization of turbo 
compressor deemed more demanding.

The four important steps and accompanying software used 
in the workfl ow are illustrated in Figure 3. The fi rst step en-
tails geometric defi nition and parametrization. This step is 
vital for success of the project and typically the most time-
consuming. Steps 2 and 3 call for considerable experience 
to ensure complete integrity of the fi nal results. Each of 
these work phases presents its own challenges, described 
in detail in the following sections.

The functional principle of a vertical axis wind 
turbine
In contrast to ‘conventional’ wind turbines, those with a 
vertical axis require further explanation as the direction 
of airfl ow relative to the blade profi le varies (Fig. 4) during 
rotation. The left frame of Fig. 4 shows a wind turbine pro-
fi le with three arms. The turbine rotates anti-clockwise in 
the plane shown, with the wind blowing from the left-hand 
side with velocity c (see Fig. 4).

The velocity triangle at the leading edge of the blade reveals 
that it receives a relative wind velocity, w. The direction and 
velocity is determined when the wind velocity, c, and the ro-
tational velocity of the turbine, u, are given. This is generally 
the case for each blade position. The relative incident wind 
velocity, w, determines the lift, Fa and the resistance, Fw. 
The subsequent angle and also the resultant blade force, 
R, are explicitly defi ned. Figure 4, shows force R as torque 
which develops in the same direction as rotation of the tur-
bine. This ensures that blades in the opposing direction to 
the wind develop a positive driving torque.

The distribution of pressure around the rotating blades shown 
in the right-hand frame of Fig. 4 provides further information 
about functionality of the turbine. The pressure distribution 
clearly shows suction on the inner side of the blade.

Parametrization
Optimizing wind turbine geometry requires a set of pa-
rameters that can provide a meaningful and workable de-
scription of such geometry. The parameters listed in Figure 
5 were initially of interest: they are organized into param-
eters associated with main dimensions of the turbine, and 
those associated with its operational status.

Fig.2: Optimization projects from turbomachine construction sector

Fig.4: The working principle of a vertical axis wind turbine (left) velocity vec-
tors and pressure distribution on blades (right)

Fig. 3: The main workfl ow steps
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The blades themselves also require an equally demanding 
parametrization. Parameterization of the blade has a de-
cisive infl uence on the veracity of the entire metamodel. 
Figure 6 shows a typical profi le geometry of a blade. This 
is created using data points. It is not unusual to describe 
blade cross section with more than 100 data points. How-
ever, this type of geometry should be rejected as the basis 
of blade profi le parameterization: the use of large numbers 
of independent data points poses a multitude of problems 
for stability of any later modeling.

An alternative is the use of splines. Figure 7 shows model-
ling with Bezier splines using the same blade cross section 
shown in Fig. 6.

Although at fi rst glance this method may appear better, it is 
not recommended for several reasons. Although the use of 
control points, which can be considerably fewer than when 
using data points, can reproduce smooth surfaces, they are 
not suitable for parameterization. It has been shown that 
Latin Hypercube sampling for defi nition of DOE’s produces 
profi le geometries that are almost always unsuitable for 
fl ow mechanics. This type of parameterizations is far too 
arbitrary to be reproducible. To ensure that only useful pro-
fi les are generated requires a more complex strategy. Using 
a complex morphing algorithm, it is possible to create ge-
ometries that are able to be used in fl ow mechanics studies.

To describe geometries, simple arithmetic values are not 
used but rather parameter values categorized by descrip-
tive nomenclature (see Fig. 8).

A total of 15 parametric values are used to describe the 
geometry of the wind turbine and its operational status. 
These are listed in detail in Figs. 5 & 8.

Figure 9 shows a selection of cross sectional profi les mod-
elled using the parameters outlined in Fig. 8. The outline 
of the profi les demonstrate the quality and range of fl ow 
mechanics profi les that can be created.

Meshing
High quality meshing is extremely important because the 
greatest deviation due to numerical error is manifest in the 
mesh. This is, in turn, also extremely important for the reli-
ability of a metamodel.

1. Diameter
2. Height
3. Blade length
4. Number of blades

5. Wind velocity
6. r.p.m. or rotational velocity

7. Thickness ratio
8. x-max thickness
9. Camber ratio
10. x-max camber
11. Nose circle radius

12. Trailing edge radius
13. Refl ex (trailing edge)
14. Wetted aspect ratio 
15. Angle of attack

Fig. 5: Left - main parameters for the turbine and right - parameters for op-
erational status of the turbine

Fig. 6: Defi nition of blade profi le geometry using data points

Fig. 9: A selection of parameter-based profi les

Fig. 10: Comparison of size relationships (scales)

Fig. 8: Parameterization of the profi le model

Fig. 7: The defi nition of blade profi le geometry (blue) using control points (red)
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The large difference in scales presents one of the greatest 
challenges for fl ow simulations. To maximize mesh quality, 
it was set to use only hexahedral elements.

Figure 10 (see previous page) illustrates the differences in 
scale. A wind turbine with a rotor diameter of approx. 10 m 
and a typical blade profi le length of 0.2 m requires a simula-
tion area the size of a football fi eld to include the necessary 
up- and down-stream air fl ow trails.

The appropriate mesh, including all the extreme differences 
in element measurements, is shown in Figure 11. These dif-
ferences become particularly apparent when comparing 
the mesh density in the area surrounding the turbine and 
the area close to the blade profi le. Since boundary layer 
thickness is virtually uninfl uenced by the dimensions of the 
turbine, and that 15 nodes vertical to the wall are assigned 
to achieve the appropriate mesh resolution, this region has 
mesh with smallest dimensions.

As a matter of routine, such projects always include a check 
of mesh independency: decades of experiences has shown 

Fig. 11: Meshing of different scale sizes

Fig. 12: Study of mesh dependency

that the integration of such studies is indispensable for 
the development of a robust workfl ow. The result of such 
a study is shown in Figure 12. This study was based on 2D 
simulation. A factor of 4 was selected for mesh refi nement. 

Meshes of more than 16 million nodes ensure reliable sim-
ulation results and are therefore suitable for generating a 
metamodel.

Flow simulation
All fl ow simulations need to be done transiently since the 
rotation axes of these wind turbines, in contrast to horizon-
tal axes turbines, is vertical to the air fl ow. This dramatically 
increases the computational effort required since only after 
at least 10 revolutions of the rotor is it possible to deter-
mine whether the simulation is stable. 

Furthermore, convergence cannot be established by con-
ventional means, since the derived solution is not charac-
terized by constant velocity or pressure, but rather by values 
that oscillate as a function of turbine revolutions multiplied 
by the number turbine arms.

The result of such a simulation is shown in Figure 13 (see 
next page) as a snap shot of a rotating wind turbine and the 
downstream air fl ow trails. This clearly indicates the rela-
tively large area that needs to be included the simulation 
relative to blade area. The airfl ow trail clearly extends some 
considerable distance downstream from the turbine. 

Evaluation proved to be more demanding than usual be-
cause analysis of turbine power output or calculation of 
effi ciency requires integration of the moment and loss per 
period. The power delivered to a generator fl uctuates dra-
matically for each rotor arm during each rotation.

The Metamodel 
The parameterization used for the metamodel has already 
been described in section 4. A DOE consisting of 200 Latin 
Hypercube Samples was used to generate the metamodel. 
Particularly worthy of note, is the contribution made by 
meshing to the painstaking construction of the geometry, 
such that only one of 200 samples needed to be discarded.
Equally satisfying was the careful processing of parameter 
sets that benefi tted from defi nitions based on fl ow me-
chanical interactions which resulted in the detection of no 
redundant parameters. In other words, the sensitivity anal-
ysis vindicated the selection of all the parameters defi ned 
at the start of the development work.

The metamodel shown in Fig. 14 describes the turbine pow-
er output dependent on the wetted aspect surface and the 
specifi c rpm. A Moving Least Squares (MLS) algorithm has 
been shown to be the best predictor of variation in turbine 
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power output. Somewhat (pleasantly) surprising was that 
for all the turbine-relevant parameters which determine 
the effective power output in a specifi c operational range, 
the predictive accuracy of the metamodel with respect to 
their variation was greater than 91%. This value was calcu-
lated as the Coeffi cient of Prognosis (CoP) using optiSLang. 

The reason for this high value, which exceeds the determined 
value of similar turbomachine projects, was the scrupulously 
careful defi nition of the parameters (see section 4.)

However, this ability represents only a fraction of the informa-
tion a metamodel can deliver. It is normal practice to confi g-
ure turbomachinery for a specifi c operational point or some 
optimal parameter. In reality, however, operational conditions 
occur that deviate considerably from the original confi gura-
tion. These deviations are then usually plotted graphically as 
characteristic operational curves over a range of conditions.

The quality of the metamodel is shown in Figure 15 which 
shows a derived curve and four computed operational points, 
which show good congruence of the four evaluation points. 

As a conclusion, the following can be stated:
It is possible with a metamodel to predict turbine power 
output and effi ciency not only for a single operational point 

Fig. 13: Visualization of fl ow simulation

Fig. 14: The metamodel for a wind turbine as target value

Fig. 15: Validation of parameters computed operational points

but also for the operational behaviour with a given wind 
velocity. Whereby, of course, the turbine rpm is optimally 
calculated for a given wind speed. 

The obverse is also true: For a desired power output from 
the wind turbine it is possible using the metamodel to com-
pute the turbine size or blade geometry. That the optimal 
turbine rpm can also be analysed is almost a matter course 
if the minimum loss is defi ned as a target value.

Evaluation of results
Although the validation, as shown in Fig 15, provides highly 
signifi cant information because of the high reliability of the 
simulation results, it nevertheless, made sense to compare 
the model with an existing wind turbine. 

The University of Uppsala have made recordings from a test 
turbine (Figure 16a) which provided suitable data. In the 
right-hand frame is a plot of power output against wind ve-
locity for the turbine as predicted by the model. 
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Fig. 16a:  Turbine near Uppsala, Sweden (image source: see last paragraph)

In addition, an operating point (red square in Fig. 16b) from 
measured data has been superimposed; deviation from the 
model was less than 5%. This vindicates the value of the ap-
proach described in this work. It should be said that no fl ow 
simulation has been computed for this turbine but rather 
the curve was derived from the metamodel.

Comparison of the metamodel with conven-
tional methods 
A model for semi-analytical computation of vertical axis 
wind turbines has existed for decades. The computations 
principle is based on the concept that the turbine rotor 
consists of a mesh comprised of a fi nite number of stream-
tubes, and that the fl ow size is calculated for each stream-
tube.

The Double Multiple Streamtube Model developed by Para-
schivoiu is the most commonly used model. This model 
makes it possible to consider the rotor in both the down-
wind and upwind areas and the interaction of each rotor 
blade with the air fl ow. 

As streamtubes are created separately in an upwind and 
downwind area, it is possible to recreate more realistically 
the effect of the upwind rotor blade on the downwind rotor 
blade. In this case it is assumed the trail from the upwind 
blade is fully developed and velocity is fully developed be-
fore interaction with the downwind blade.

Figure 17 shows plots derived from the metamodel (blue) 
and Double Multiple Streamtube models (yellow). In addi-
tion, CFD calculated operational points (red) have also been 
added for comparison. Greater congruence between the op-
erational points and the metamodel curve strongly suggest 
it is the more accurate predictor.

Metamodel-based prognosis for three different 
sites
It is well-known that the effectiveness of wind turbines is 
strongly infl uenced by its location. Equally important is the 
infl uence of local factors and factors determined by given 
global boundary conditions. Both can be rapidly calculated 
using the metamodel, including the infl uence of local fl uc-
tuations in wind velocity, since the metamodel is capable of 
predicting power output for any given turbine geometry at 
any given wind velocity.

Figure 18 shows the power output of the turbine as a di-
mensionless power coeffi cient plotted against wind veloc-
ity as a function of rotational velocity. This graphic clearly 
indicates at which rpm for a given wind speed the turbine 
functions optimally. 

Fig. 17: Comparisons between the Metamodel (blue line), an analytical mod-
el (yellow line) and a CFD simulation (red squares)

Fig. 16b: Validation of plot by comparison with measured data from an exist-
ing turbine near Uppsala, Sweden
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Fig. 18: Curves for different types of turbine location; blue-city; red-island; 
green-mountain
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optiSLang optimizes the process of model calibration by automatic identifi cation of suitable input and output 
parameters for a realistic impact prognosis of joining distortion on the deformation of parts in the assembly.

AUTOMATIC CALIBRATION OF SUBSTITUTE LOADS 
TO ESTIMATE THE IMPACT OF JOINING DISTORTION 

CASE STUDY // MECHANICAL ENGINEERING 

Introduction
Due to the rising possibilities of the Finite Element Meth-
od (FEM) regarding virtual tolerance prognosis, it is also 
increasingly used in Car-Body-Production. Among others, 
one application is to simulate the distortion caused by the 
up to 6,000 joining operations during car manufacturing. 
However, the calculation of deformations related to joining 
procedures, as well as the integration of detailed FE-models 
for joints into full car models would result in prohibitive 
simulation time. As a solution, simplifi ed model approach-
es for joints are necessary. The idea behind these simplifi ed 
approaches is to use mechanical loads to estimate the de-
formation brought about by joining processes in the FEM. 
At present, adequate surrogate loads for mapping joining 
distortion are often still derived in a manual calibration pro-
cess which consumes a lot of time and effort.

One approach is using the optimization software optiS-
Lang for the automatic calibration of surrogate mechanical 
loads. The article will show how the tool can be applied to 
properly derive suitable input and output parameters, to 
generate a target function and to develop methods of opti-
mization with the help of a real-life joining situation.

Customer’s requirements regarding the quality of the car’s 
impression cause a constant reduction of gap dimensions 
and tolerances. At the same time, using more and more 
lightweight materials, such as higher-strength steel, makes 
the manufacturing process for component parts and as-
semblies increasingly complex. The automotive industry 
uses more and more simulation tools based upon the FE 
method to meet these challenges. Thus, for example, the 
joining of car bodies can be simulated in an early phase of 
the manufacturing process.

Here, the potential of FE based simulation will particularly 
be shown in using a surrogate mechanical model to nu-
merically predict the impact of the joining process on the 
deformation of parts in the assembly. The basic idea is to 
simulate the geometrical deformations resulting from the 
joining process with the help of locally induced mechanical 
loads. These loads have to be calibrated in advance using 
simplifi ed experimental reference setups. During this pro-
cess, the following steps for substitute modeling of joining 
distortion have to be considered (see Fig.1):
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1. Derive a simplifi ed reference assembly from a car body 
structure

2. Join the reference assembly and determine the deforma-
tion experimentally

3. Calibrate the substitute mechanical loads for a substitute 
model build on a local level using the experimental data 

4. Transfer the resulting substitute loads of the substitute 
model to the joint model of the complex car body structure

5. Use an elastic FE calculation to determine the global 
component part distortion

The aim here is to replicate the distortion shapes of the 
simplifi ed process model. Thus, the calibrated substitute 
mechanical loads transferred to the global component part 
structure result in approximately the same state of defor-
mation as seen in reality. The quality of model calibration 
(i.e. the capability of the simulation model to map the ex-
perimental reference) is crucial for the quality of the sub-
stitute mechanical model. Using a manual process, a high 
level of personal effort is necessary to produce a reasonable 
mapping quality. With complex calibration models, this it-
erative analytical process can take several days. In the fu-
ture, the calibration process can be supported by methods 
of CAE-based optimization to automatically generate a high 
quality level of responding substitute mechanical loads for 
mapping. As Fig. 2 (see next page) shows, the software op-
tiSLang was integrated in the calibration process with the 
objective to decrease time and effort needed for calibrat-
ing substitute mechanical models. Here, a reduction from 
several days to a maximum of four hours could be achieved.

Simulation method
The FE program PAM-STAMP 2G (ESI group) was used for 
simulative mapping of the joining process. As the schemat-
ic example of a spot-welded joint shows (Fig. 3, see next 
page), the modeling of the joining process can be reduced 
to the following simulation steps:

1. Positioning and clamping of the specifi c components
2. Connecting the joining components with rigid girder ele-

ments at the position of the electrodes 
3. Use of mapping to implement substitute mechanical 

loads in the form of tensions (stress) in the area of the 
joining point

4. Calculating the balance where a change in the geometry 
has a result on the component parts 

Parameter identifi cation 

Input parameters
2-D shell elements are used to make the parts to be joined 
discrete in the FE model, reaching a conformity with the 
Belytschko-Tsay element formulation. These shell elements 
are mostly used in the sheet metal forming simulation and 
describe the behavior up to fi ve integration levels above the 
virtual sheet thickness. The specifi c integration levels of the 
shell elements are mapped with the stress deposited in the 
mapping fi le during the mapping procedure as depicted in 
Fig. 3 (see next page, refer to Step 3). Thus, the distortion 
measured in Point 2 in Fig.1 was reached. This enables the 

Fig. 1: Manual calibration process for substitute mechanical models
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user to have control over the intensity of distortion in re-
gard to the simulation model. Therefore, the fundamental 
idea is using optiSLang to access needed stress defi ned in 
the mapping fi le and to use an optimizing algorithm to sys-
tematically modify them. So, the simulation model comes 
closest to the experimental reference during the calibration 
processes.

Because both the upper and lower blanks were independent-
ly mapped with substitute mechanical loads, a total of ten in-
put parameters for optimization (see Table 1) were produced. 
The derived input quantities that were supposed to describe 
the behavior of the shell’s cross-section mathematically are 
shown in Fig. 4. Furthermore, the parametrized stress from 
the optimization algorithm could be continuously varied for 

Fig. 2: Integration of optiSLang into the calibration process

Fig. 3: simulation steps to compute the joining process
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the upper and lower blank to search for the optimum design 
confi guration where the pressure and tensile stresses can be 
assigned to the shell elements in the joining zone.

Objective criterion 
Discrete measuring points were defi ned as targets on the 
entire surface of the assembly of the calibration model. This 
created the space in the Z-direction of the simulation mod-
el (ACTUAL) in regard to the experimental reference (TAR-
GET) at the end of a simulation run-through. Fig. 5 shows 
the defi nition of the targets on the calibration model.

To be able to consider all of the measuring points, it is nec-
essary to use a target function to combine the effective in-
terrelationships discovered in an optimization model. The 
value of the target function was calculated from the total 
of the squared spaces between the experiment and simula-
tion at the specifi c measuring points. The objective of opti-
mization is to keep this function value as minimal as pos-
sible or, in other words, to minimize the amount of which 
the simulation model and the experimental reference differ 
from one another at all measuring points.

Case study
A real-life example of car body engineering was used for ex-
amining the functionality of the calibration procedure. It is 
described here by deriving two specimens from one complex 
car body structure: specimen no. 1, consisting of three joining 
points and specimen no. 2, consisting of fi ve joining points 
(see next page, refer to Fig. 6). Specimen no. 1 was used to 
automatically calibrate the model with optiSLang while speci-
men no. 2 was used to check the quality of the calibrated sub-
stitute model for the second situation. Finally, any divergences 
between the experiment and simulation were calculated.

Calibration model: specimen no.1
Because of the small number of just ten parameters to be 
calibrated, the optimization was based on an adaptive re-
sponse surface method (ARSM) implemented in optiSLang. 
The ARSM algorithm generates a support point pattern con-
sisting of ten samples in every iteration step and shifts it until 
the algorithm reaches a user-defi ned termination criterion. 
In the case of this example, the termination criterion is met 
when either the optimizer reaches a maximum of 90 simula-
tion runs, i.e. nine iterations, or the objective function shows 

No Parameters Lower Bound Upper Bound No Parameters Lower Bound Upper Bound

1 Stress1_Oberblech -10 MPa 10 MPa 6 Stress1_Unterblech -10 MPa 10 MPa

2 Stress2_Oberblech -10 MPa 10 MPa 7 Stress2_Unterblech -10 MPa 10 MPa

3 Stress3_Oberblech -10 MPa 10 MPa 8 Stress3_Unterblech -10 MPa 10 MPa

4 Stress4_Oberblech -10 MPa 10 MPa 9 Stress4_Unterblech -10 MPa 10 MPa

5 Stress5_Oberblech -10 MPa 10 MPa 10 Stress5_Unterblech -10 MPa 10 MPa

Fig. 4: Identifi cation of the parameters on the 2-D shell element Fig. 5: Defi nition of objective

Table 1: selected parameters and their variation limits
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a value smaller than 0,01. The convergence procedure of the 
ARSM could be derived from the objective history diagram 
shown in Fig. 7 (top) and the parameter history diagram for 
the parameter Unterblech_Stress5 in Fig. 7 (bottom). In this 
connection, the optimizer reliably converges after a total of 
nine iterations (90 simulations) and reduces the functional 
value of the target function to 1.2 in the fi rst iteration loop 
and to the user defi ned stop criterion of approximately 0.033 
in the fi nal iteration step. Altogether, the optimization of the 
substitute loads required approximately three hours run-
ning four simulations simultaneously. Thus, the target of re-
ducing the simulation time for the calibration process to less 
than four hours was reached without any problems.

The resulting deformation from both the experimental 
reference (blue) and the simulation (red) were referenced 
to the design state (CAD-0) for evaluating the quality of 
calibration. The welding distortion was evaluated along the 
cutting plane designated on the upper and lower blank in 
the sheet’s normal direction (refer to Fig. 8).
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Fig. 6: Test specimens used during the test

Fig. 7: The objective history diagram of the ARSM algorithm (left) and the 

parameter history diagram of the Parameter Unterblech_Stress5 (right)

Fig. 8: Calibration results (Simulation vs. Experiment) for specimen no. 1
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The prognosis of deviations in the simulation showed excel-
lent agreement with the experimental data. Furthermore, 
the maximum difference of the distortion values from the 
simulation and experiment are less than 0.07 mm on both 
the upper and lower blank. From the calibration process of 
specimen no. 1, it can be concluded that the ARSM algo-
rithm fi nds the matching confi guration within a few itera-
tions. Thus, the time and effort for identifying suitable sub-
stitute loads could be substantially reduced. The achieved 
calibrating quality was high in this example which indicates 
a proper suitability for further transferring of the substitute 
mechanical loads to more complex applications.

Verifi cation model: specimen no.2
To verify the quality of results, the substitute loads calculat-
ed by the optimizer were transferred to specimen no.2 (fi ve 
joining points) without any alteration. Fig. 9 shows the ap-
propriate divergences between experiment and simulation.

The maximum deviation between the experiment and 
simulation is 0.05mm on the upper blank and 0.1mm on 
the lower blank. These matches indicate the high level of 
calibration quality of specimen no.1 making the substitute 
mechanical model capable of predicting reasonable distor-
tions while being transferred to more complex applications. 

Conclusion
An experience-based analytical process could be set up to 
exclusively calibrated substitute mechanical models. With-
out this procedure, surrogate mechanical loads, needed for 
matching the distortion, have to be manually calibrated. 
They were based on experimental iterations to the point 
where the joining distortion from experiment and simula-
tion agreed. This requires not only a high level of user ex-
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pertise, but also especially time-consuming change loops. 
Here, the potential of optimization-based model calibration 
could be demonstrated. The optimization algorithms deci-
sively reduced time and effort for calibrating the substitute 
parameter to a couple of hours while maintaining a high 
level of calibration quality.

Author // Patrick Ackert, Christian Schwarz (Fraunhofer Insti-
tute for Machine Tools and Forming Technology)

Source // www.dynardo.de/en/library

Fig. 9: Comparison of measured and simulated distortions of specimen No. 2 (Calibration model: specimen No. 1)
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Apart from ANSYS Composite PrepPost, ar engineers used optiSLang in the design phase for an advanced 
optimization of the boom of a sailing race dinghy.

OPTIMIZATION OF FI BER COMPOSITE 
COMPON ENTS I N YACHT R ACI NG 

COSTUMER STORY // PROCESS ENGINEERING 

For decades, fi ber composites have been successfully applied 
in yacht racing. The knowledge of application has reached an 
incredibly advanced level. Especially for construction parts 
with just a few requirements regarding the boat design, the 
technical development supported by simulation software is 
an important factor for success. 

Sailing and construction teams consider further technical 
optimization as an economic challenge, especially in the 
highly developed boat classes. Low production quantities 
even increase the cost pressure on development asking for 
special approaches of design.

Less weight, but the same strength and rigidity
The boom of a racing dinghy serves for hoisting and trim-
ming the main sail. It takes up a signifi cant part of the sail-
ing force. Thus, strength and rigidity properties of the boom 
are of crucial importance for the sailing performance. At 
the same time, the boom needs to be as light as possible 
to meet the requirements of competitive racing. As bound-
ary conditions for the optimization, the load cases and the 
design space of the boom were predefi ned. In addition, the 

solution should ensure the reutilization of existing molding 
tools. This eventually restricted the focus of optimization 
potential to the multi-layer laminate. The aim was a signifi -
cant weight reduction of the boom while keeping its prop-
erties regarding strength and stiffness unchanged. Eventu-
ally, the team focused on four key parameters to improve 
the properties of the fi ber composite laminate: the layer 
angle, the layer number and arrangement, as well as the 
selection of materials. The reduction of theoretically pos-
sible parameter combinations to the practically meaningful 
ones regarding manufacturability and material availability 
accelerated the actual optimization process.

Simulation tools for composite structures
The construction team of ar engineers designed the fi ber 
composite components with the assistance of the software 
ANSYS Composite PrepPost, which is fully integrated in the 
simulation environment ANSYS Workbench. The tool is es-
pecially capable for design development and considers the 
modeling of structures and the draping. In addition, the 
software provides a compact display of results based on 
combined failure criteria. With the software optiSLang in-
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side ANSYS, the optimization procedure can be conducted 
without leaving ANSYS Workbench. This guaranties a data 
transfer without connecting problems. The uniform and 
user-friendly interface also resulted in an overall shorter 
processing time. A parameterized FEM model functioned as 
a basis for optimization with the parameter set generated 
by optiSLang and controlled by ANSYS Workbench.

The application of optiSLang was performed in three steps:
 • Sensitivity analysis
 • Optimization
 • Robustness evaluation

In the fi rst step, the sensitivity analysis, the design or in-
put parameters and the result values or output parameters 
were defi ned and classifi ed within a value range (10% stan-
dard). Based on these parameters, optiSLang then generat-
ed a design of experiment including various combinations 
of parameter values. After simulating the individual design 
variants, optiSLang created a surrogate model for the result 
visualization of the sensitivity analysis using different types 
of graphical post processing. The evaluation of the results 
illustrated the correlations between the individual param-
eters as a signifi cant contribution to the understanding of 
the function and component behavior. This represented the 
basis for a target-oriented optimization.

Optimization with subsequent validation
In the following step, the procedure of optimization dif-
fered depending on the signifi cance of the surrogate model. 
A high prognosis coeffi cient indicates the possibility to con-
duct an optimization just by using the surrogate model and 
a subsequent validation through the FEM model. This time 
saving procedure is therefore preferable. In the case of hav-
ing a surrogate model with low prognosis quality, possible 
causing effects should fi rstly be investigated. The recalcula-
tion of certain design points or changing input parameters 
can already help to improve the coeffi cient of prognosis. 

A minimization of weight as the main goal of the boom op-
timization was confi gured in optiSLang. The team of ar engi-
neers considered safety limits at various points of the boom 
as constraints. In addition, the defl ection was not allowed to 
exceed the limit. Due to the carefully prepared optimization, 
the surrogate model showed a high accuracy capable of run-
ning a direct simulation. The procedure of optimization, the 
validation with the FEM model as well as further parameter 
adjustments fi nally achieved a weight reduction of 18%. At 
the same time, the mechanical properties of the boom re-
mained unchanged or were even improved in several cases. 

Since some design input parameters, like layer angles, have 
typically been subjected to production-related scatter, the 
consideration of this infl uence by conducting a robustness 
analysis is also of great importance. Combined with the 

knowledge of the underlying stochastic process, optiSLang 
allows a classifi cation of distribution and, thus, the deter-
mination of the reliability of the individual design values.

Especially while exploring the performance limits of a com-
ponent, as it is often the case in yacht racing, the results of 
a robustness analysis provide several advantages. A proven 
robust design guarantees an increased safety against ran-
dom scatter of input parameters. Thus, the individual com-
ponents can already be optimized during the design phase 
according to the extreme demands in later use.

ar engineers has performed an optimization that resulted 
in a boom that is lighter and even more rigid than the previ-
ous model while also fulfi lling the predefi ned safety mar-
gins for the material. A better utilization of the safety mar-
gins in all fi elds could further improve the weight reduction 
potential of the component. At the same time, an effective 
product development process could be determined by com-
bining the optimization software optiSLang inside ANSYS 
with the practical know how in the design of components 
made of fi ber composite materials. The results of this ap-
plication will also serve as a basis for future component op-
timizations and feasibility studies.

Author // Axel Reinsch (ar engineers GmbH)
axel.reinsch@ar-engineers.de | www.ar-engineers.de
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Illustration of evaluation results in optiSLang

Puck failure criteria



Potential improvements are identifi ed with the help of optiSLang for optimizing outer casing bolts of large gas 
turbines regarding life and cost requirements.

FEASI BI LITY STU DY OF L ARGE GAS TU RBI N E 
OUTER CASI NG BOLTS

Introduction
The bolted connections at the outer casing of large gas tur-
bines are critical regarding life and cost. One critical feature 
is the difference in temperature between bolt and fl ange 
during transient start-up and shut-down. This can cause, in 
combination with a hydraulic tensioning pretension close 
to the yield strength, an overstretching of the bolts. An 
overstretching causes a loss of pretension and reduces the 
clamping force at the fl anges. Reduced clamping force can 
cause leakage and requires an expensive seal. 

This feasibility study shows the development of a heat 
transfer model. The heat transfer values are fi tted from dif-
ferent site measurement on actual casings in operation. 
Further, the infl uence of the manufacturing, tolerances as 
well as the variation of the heat transfer value caused by 
different bolt positions or bolt-fl ange geometries, are stud-
ied regarding the robustness of the result and temperature 
difference.

Finally, the hurdles and potential improvements are identi-
fi ed with the help of the software optiSLang for further use 
on gas turbine projects.

In order to produce work shaft output, a gas turbine com-
presses air and adds fuel, which expands after ignition and 
drives the turbine.

These steps come along with a high temperature gradient 
of the working gas and all the components involved. These 
gradients again are the main reason for stresses and there-
by crucial for the lifetime of the whole assembly.

During transient start-up and shut-down, temperature gra-
dients also occur in radial direction, especially in the split 
plane where the rather thin top and bottom housing are 
bolted together through thick fl anges. The small contact 
area between bolt head and fl ange causes a slow conduc-
tion of the heat into the bolt and an even higher tempera-
ture difference between those two parts. This temperature 
difference is directly proportional to the low cycle fatigue 
of the bolt. Even an overstretching of the bolts is possible 
in combination with a bolt pretension close to the yield 
strength. Overstretched bolts lead to a reduced clamping 
force which can result in leakage. To prevent this leakage, 
a relatively expensive seal is placed between the fl anges.

COSTUMER STORY  // TURBO MACHINERY 
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The long-term aim is to minimize fatigue, reduce mainte-
nance costs, and maybe even completely remove the neces-
sity for the seal. 

This feasibility study shows the development of an appro-
priate model fulfi lling these requirements. The parameters 
of the heat transfer were fi tted from different site measure-
ments on actual casings in operation. Finally, the infl uence 
of the manufacturing, tolerances as well as heat transfer 
value variation caused by different bolt positions or bolt-
fl ange geometries, were studied regarding robustness of 
the result and temperature difference (Fig. 1).

Numerical Model
An FE-model was developed to study the general behavior 
of the bolted connection. Taking advantage of symmetries, 
only the upper housing and half a bolt were modeled (Fig. 
2), while the bolt was fully parametric (Fig. 3, see next page).

The heat transfer coeffi cients (HTC) at the contacts between 
bolt, washer, nut and fl ange are essential for the resulting 
temperatures. Since there is no easy way to obtain exact 
values these parameter have been just estimated usually. In 
order to consider this uncertainty, the HTC was also param-
eterized for each contact (Fig. 4, see next page). 

In general, parameterization of all input data of the model is 
possible. However, different effort is necessary. Accessing some 
of the parameters was made possible by using scripts utilizing 
the Ansys Parametric Design Language (APDL) which allows in-
depth access to every detail of the setup (Fig. 5, see next page).
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Fig. 1: Workfl ow 

Fig. 2: Overview of the geometry 
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Fig. 3: Parameterization of the geometry

Fig. 4: Defi nition of heat transfer coeffi cients 

Fig. 5: Effort for parameterization of certain properties |  Workbench func-

tion, low effort |  Small APDL commands, low effort |  APDL commands, 

high effort Fig. 7: Defi nition of the temperature difference
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All resulting input parameters are shown in Fig. 6. While 
there are only two geometric variables (bolt radius R and 
fl ange height H), the majority of the variables includes the 
material properties of the parts (thermal conductivity and 
specifi c heat) and only roughly known boundary conditions 
(HTC between parts). Especially the HTC values are usually 
taken from literature and are often a point of discussion.

Output parameter
Due to similar thermal expansion factors of bolt and fl ange 
material, the overall best behavior is expected when there is 
no temperature difference between these parts. This leads to 
the target of the optimization to minimize the temperature 
difference. The difference is simply calculated by subtracting 
two temperature probes at the bolt and fl ange (Fig. 7). Since 
the simulation is transient, at each probe the temperature 
varies over time resulting in a time dependent temperature 
difference where the maximum Tmax over all time steps has 
to be identifi ed. This can be done by utilizing an ANSYS APDL 
macro or using Dynardo’s Extraction Tool Kit (ETK). 

Results
For this model, a DOE was created and a sensitivity analysis 
was performed. As a matter of fact, a Latin Hypercube Sam-
pling (LHS) of 100 samples was already suffi cient to achieve a 
Coeffi cient of Prognosis (CoP) of 99% for the most important 
response value. The three parameters with the highest impact 
on the temperature difference are the bolt radius, the HTC be-
tween the bolt’s shaft and the bore hole as well as the height of 
the fl ange (Fig. 8). The other parameters have a negligible infl u-
ence on the variation of the results and were automatically fi l-
tered by optiSLang MOP algorithm. The correlations turned out 
to be rather trivial, which is obvious and was expected before. 
With a small bolt radius R and a high HTC between bolt shaft 
and bore hole, the temperature difference (my_Delta_Temp) 
between both parts is small and vice versa (Fig. 9, next page). 

Calibration of the HTC Value
While the height of the fl ange and the bolt radius are geo-
metric constants which can easily be measured, fi tting the 
HTC4 shaft-thread (Fig. 10, see next page) value was a chal-
lenge.

In this case, the input parameter HTC4 shaft-thread is ac-
tually the heat conductivity of a contact without any stiff-
ness, connecting the bore hole through the air to the bolt’s 
shaft. This single parametric conductivity is supposed to re-
place the whole system of the two HTC, i.e. from the fl ange 
to air respectively from the bolt to air as well as the thermal 
conductivity of the air itself. This problem would usually 
require a full fl uid simulation. To fi nd an appropriate value 
within the thermal transient environment, the model was 
fi tted to actual measurements of the bolt temperature.

Therefore, the start-up time, where the highest tempera-
ture gradients are expected to occur, was divided into sev-
eral sections, each with its own parametric HTC (Fig. 11, see 
next page). These values were then fi tted by matching the 
resulting temperatures at the bolt with the corresponding 
measured temperatures.

Fig. 6:  Example for parameter ranges for the optimization 

Fig. 8: Coeffi cient of Prognosis

No. Description Variable Range Minimum Range Maximum Unit

1 radius R 20 60 mm

2 fl ange-height H 100 400 mm

3 HTC bolt to nut HTC_bolt_nut 1 000 50 000 W/m² C

4 HTC nut to fl ange HTC_nut_fl ange 1 000 50 000 W/m² C

5 HTC washer to fl ange HTC_washer_fl ange 1 000 50 000 W/m² C

6 HTC shaft to hole HTC_shaft thread 10 50 000 W/m² C

7 thermal conductivity bolt material lambda_bolt 25 40 W/mK

8 thermal conductivity fl ange material lambda_fl ange 28 35 W/mK

9 specifi c heat bolt / fl ange material sp_heat_fl ange 500 600 J/kgK
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Robust Design Study
For the feasibility, it is of higher interest to take a look at the 
infl uences of manufacturing and material tolerances on the 
model in a Robust Design Study.

For robustness evaluation the metamodel from the sensitivity 
study was used. Using the metamodel is feasible if all impor-
tant scattering parameter are part of the sensitivity analysis 
and the variation range of the sensitivity analysis covers the 
scatter range. Using distribution functions of the three most 
infl uencing parameters, a latin hypercube sampling of 100 de-
signs was generated on the metamodel to see the infl uence 
of deviations on the resulting temperature difference (Fig. 12).

Fig. 13 shows the deviations impact on the temperature 
difference. Obviously, scatter of the parameter HTC_shaft_
thread has a major infl uence on the variation of tempera-
ture, while the parameters H’s and R’s scatter are insignifi -
cant, adding even more value to the previously performed 
fi tting of the parameter.

This fi tting resulted in three different HTCs, one for every 
time section, all better matching the actual measured tem-
peratures compared to a constant estimation. Thus, discus-
sions about which HTC should be assumed were ended. 
With these fi tted parameters, the temperature difference 
between fl ange and bolt was calculated to improve the 
original target of the optimization.

In Fig. 11, the temperature differences between bolt and 
fl ange are shown. The three graphs compare the measured 
temperature difference between bolt and fl ange, the differ-
ence resulting from the simulation with a constant HTC and 
the difference from the simulation with the time depending 
fi tted HTC.

While the fi tted HTC values already provide a better match to 
the measurements, there is still a gap between those two. This 
was expected, because the second component of the temper-
ature difference – the temperature of the fl ange - is not yet 
fi tted. This can be done using the same technique as before.

Fig. 9: Response surfaces

Fig. 10: HTC4 shaft-thread

Fig. 11: Temperature difference between fl ange and bolt 
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Conclusion
This feasibility study showed a fast way to optimize the mod-
el. Especially the possibility to easily fi t the model to measure-
ments and thereby eliminate estimated parameters from the 
simulation was very useful and increased the overall accuracy 
of the model tremendously.

The Robust Design Study showed a very small infl uence of the 
fl anges height deviation on the resulting temperature differ-
ence. This is interesting, since the height is still an important 
parameter for the resulting temperature difference, but the 
deviations are far less infl uential than the HTC’s deviations. 
This indicates that loosening the tolerances on the fl ange 
height is feasible without increasing the temperature differ-
ence and thereby decreasing the parts lifetime, while manu-
facturing time and costs can be reduced.

Author // 
Uwe Lohse , Burkhard Voss (Siemens AG Large Gas Turbines)
Anton Enns (ITB GmbH Dortmund)

Fig. 12: Impact on the temperature difference - parameter

Fig. 13: Impact on the temperature difference - results
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